Making Information Flow Explicit in HiStar

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler,&David Mazieres
Stanford and UCLA

ABSTRACT

)))) o AV User
HiStar is a new operating system designed to minimize \Helper TTY
the amount of code that must be trusted. HiStar pro-

vides strict information flow control, which allows users
to specify precise data security policies without unduly
limiting the structure of applications. HiStar's security
features make it possible to implement a Unix-like envi- ftmp User Data VirusDB
ronment with acceptable performance almost entirely in
an untrusted user-level library. The system has no notiofFigure 1: The ClamAV virus scanner. Circles represent processes, re
of superuser and no fully trusted code other than the kerang_les represent files and directories, and rounded rdetargpresent
nel. HiStar’s features permit several novel applicationssi%'scziénﬁréfws represent the expected data flow for a vetebed
including an entirely untrusted login process, separation '

of data between virtual private networks, and privacy-ca yyinerability in Norton Antivirus that put millions of

Networ k

preserving, untrusted virus scanners. systems at risk of remote compromibel[15]. Suppose we
wanted to avoid a similar disaster with the simpler, open-
1 INTRODUCTION source ClamAV virus scanner. ClamAV is over 40,000

Many serious security breaches stem from vulnerabili-lines of code—large enough that hand-auditing the sys-
ties in application software. Despite an extensive bodyl€m to eliminate vulnerabilities would at the very least
of research in preventing, detecting, and mitigating theP€ an expensive and lengthy process. Yet a virus scanner
effects of software bugs, the security of most systems ulmust periodically be updated on short notice to counter
timately depends on a large fraction of the code behavind/€W threat;, In Wh|ch.case_ users would face .the unfor-
correctly. Unfortunately, experience has shown that onlytunate choice of running either an outdated virus scan-
a handful of programmers have the right mindset to writeNer or an unaudited one. A better solution would be for
secure code, and few applications have the luxury of beth® operating system to enforce security without trust-
ing written by such programmers. As a result, we see dN9 ClamAV, thereby minimizing potential damage from
steady stream of high-profile security incidents. ClamAV's vulnerabilities.

How can we build secure systems when we cannot Figure[illustrates ClamAV's components. How can
trust programmers to write secure code? One hope i¥/€ Protect a system should these components be com-
to separate the security critical portions of an appligatio Promised? Among other things, we must ensure a com-
from the untrusted bulk of its implementation; if secu- Promised ClamAV cannot purloin private data from the
rity depends on only a small amount of code, this codgfiles it scans. In doing so, we must also avoid imposing
can be verified or implemented by trustworthy parties re-réstrictions that might interfere with ClamAV's proper
gardless of the complexity of the application as a whole OPeration—for example, the scanner needs to spawn a
Unfortunately, traditional operating systems do not lendWide variety of external helper programs to decode in-
themselves to such a division of functionality; they makePUt files. Here are just a few ways in which, on Linux,
it too difficult to predict the full implications of every ac- @ maliciously-controlled scanner and update daemon can
tion by untrusted code. HiStar is a new operating systengollude to copy private data to an attacker's machine:

designed to overcome this limitation. e The scanner can send the data directly to the destina-
HiStar enforces security by controlling how informa- tion host over a TCP connection.

tion flows through the system. Hence, one can reason, g scanner can arrange for an external program such

about which components of a system may affect which

X X assendmaibr httpdto transmit the data.
others and how, without having to understand those com- P o)
ponents themselves. Specifying policies in terms of in- ® The scanner can take over an existing process with the

formation flow is often much easier than reasoning about ~ Ptracesystem call ovproc file system, then transmit
the security implications of individual operations. the data through that process.
As an example, consider the recently discovered criti- ¢ The scanner can write the data to a file/itmp. The

update daemon can then read the file and leak the data @
by encoding it in the contents, ordering, or timing of AV AV
subsequent outbound update queries. Helper Scanner

e The scanner can use any number of less efficient ?ﬁ
and subtler techniques to impart the data to the up-

date daemon—e.g., using system V shared memory
or semaphores, callingpckf on various ranges of |prjvate/tmp| |User Data| | VirusDB Network
the database, binding particular TCP or UDP port
numbers, mOdma_‘tmg mempry or disk usage in a de'Figure 2: ClamAV running in HiStar. Lightly-shaded components are
tectable way, callingetproctitleto change the output tainted which prevents them from conveying any information to un-
of the ps command, or co-opting some unsuspectingtainted (unshaded) components. The strongly-shadeg has untaint-
third process such a[mrtmapwhose Iegitimate func- ing privileges, allowing it to relay the scanner’s outputhe terminal.

tion can relay information to the update daemon.

S fth K be miti db) hfiles. Protecting passwords means ensuring that whatever
ome of these attacks can be mitigated by running the., ye \erifies them can reveal only the single bit signi-

scanner with |_ts own user I_D_|n ehrootjal_l. However,_ _ fying whether or not authentication succeeded. HiStar
doing so requires hlghly-p_nvneged, app“(.:at'on'Sp@'f' provides a new, Unix-like development environment in
code to setupthehrootgnwronment, and risks breakmg which small amounts of code can secure much larger,
_the scanner or one of its helper programs due to_m'SSUntrusted applications by enforcing such policies.

ing dependencies. Other attacks, such as those involv- The information flow principles behind this type of
ing sockets or System V IPC, can only be prevented b>fsolation are not new. Mechanisms in several other

modifying the kernel to restrict certain system calls. Un'systems, including SELinuml], EROE[ZS], and As-

fort;matelyl,l devising ?n_ appropriate pollcty ";(terrrpshOf.tbestos mi], are also capable of isolating an untrusted
System call arguments 1S an error-prone task, Which, 1l ;s scanner. Histar's taint labels, which originated

in_correctly (_jone, risks_lt_aaking private data or interfgrin in Asbestos, have features resembling the language-
with operation ofaleglt!mate scanner. . - based labels in Jif and Jf|O\D14]. Unlike these sys-
A bettgr way to_ specify the desired policy is in terms tems, though, HiStar shows how to construct conven-
of wh(_are mfo_r mation shp uld_flow—namely, along the ar- tional operating system abstractions, such as processes,
rows in t_he figure. Wh|le Linux cannot enforce such afrom much lower-level kernel building blocks in which
pol|c_y, HiStar can. F|gurE]_2 shows our port .Of C'a”_‘AV all information flow is explicit. HiStar demonstrates that
to HiStar. There are twq dlffe_rences from L|nu_x. First, an operating system can dynamically track information
we have labeled files with private user datatamted flow through tainting without the taint mechanism itself

Ta}inting afile restrich the TIOW of its contents t.o any un- leaking information. By separating resource revocation
tainted component, including the network. A file can befrom access, HiStar also shows how to eliminate the no-

labeled with arbitrarily mangategoriesof taint. Who- tion of superuser from an operating system without in-

ever allocates a category—in this case the file OWner_hibiting system administration; a HiStar administrator

hasr:he excluzlvgf?bll|ty tur;talntdgta m_thart] categofr]y. can manage the machine with no special right to untaint,
The second difference from Linux is that we have read, or write arbitrary user data.

launched the scanner from a new, 110-line program
called wrap, to which we give untainting privileges. 2
wrap untaints the virus scanner’s result and reports back
to the user. The scanner cannot read tainted user filediStar tracks and enforces information flow using As-
without first tainting itself. Once tainted, it can no longer bestodabels [E]. All operating system abstractions are
convey information to the network or update daemon. Sdayered on top of six low-level kernel object types de-
long aswrap is correctly implemented, then, ClamAV scribed in the next section—threads, address spaces, seg-
cannot leak the contents of the files it scans. ments, gates, containers, and devices. Every object has

Though this paper will use the virus scanner as a runa label. The label specifies, for each category of taint,
ning example, a number of other typical security prob-whether the object has untainting privileges for that cate-
lems can more easily be couched in terms of informa-gory (threads and gates can have such privileges), and, if
tion flow. For example, protecting users’ private pro- not, how tainted the object is in that category. Any sys-
file information on a web site often boils down to en- tem call or page fault can cause information to flow be-
suring one person’s information (social security num-tween the current thread and other objects. However, the
ber, credit card, etc.) cannot be sent to another usersernel disallows actions that would convey information
browser. Protecting against trojan horses means ensufrom more to less tainted objects in any given category.
ing network payloads do not affect the contents of system A label is a function from categories to tailgvels

LABELS

Level Meaningin an object’slabel

has untainting privileges in this category
cannot be written/modified by default
default level—no restriction in this category
cannot be untainted/exported by default
cannot be read/observed by default

WN P O X

Figure 3: An object’s label assigns it one of the above taint levels in
each category. Only thread and gate labels may cortain

Private /tmp User Data VirusDB Network
Any given label maps all but a small number of cat- | {br3,v3 1} | |{bwO, b3, 1} {1} {1}

egories to some default background taint level for the

object—usuallyl. Thus, alabel consists of a defaulttaint ~ Figure 4: Labels on components of the HiStar ClamAV port.
level and a list of categories in which the object is either

more or less tainted than the default. We write labelsby that thread. In other words, if a threddwith label
inside braces, using a comma-separated list of category-t hasLt(c) = %, the thread can bypass information flow
level pairs followed by the default level. For example, arestrictions inc; we therefore sayf owns ¢ A thread
typical label might be. = {w0, r 3, 1}, which is just a that owns a category can algoantownership of the cat-

more compact way of designating the function egory to other threads using various mechanisms. Fig-
ureld summarizes taint levels that appear in object labels.

0 ifc=w, While there are only a few levels, HiStar supports an

Lic)=<¢3 ifc=r, effectively unlimited number of categories. Categories

1 otherwise. are named by 61-bit opaque identifiers, which the kernel

generates by encrypting a counter with a block cipher.

Each category in which an object’s taint differs from Encrypting the counter prevents one thread from learning
the default levell places a restriction on how other how many categories another thread may have allocated.
threads may access the object. To see this, consider&he counter is sufficiently long that it would take over
threadT with labelLy = {1}, and an objecO with la- 60 years to exhaust the identifier space even allocating
bel Lo = {c3, 1}. Becausd.t(c) =1<3=Lgp(c), O categories at a rate of one billion per second. Thus, the
is more tainted thaf in categoryc. Hence, no infor- system permits any thread to allocate arbitrarily many
mation may flow fromO to T, which means the thread categories. (The specific length 61 was chosen to fit a
cannot read or observe the object. Conversely, an objeaategory name and 3-bit taint level in the same 64-bit
may be less tainted than the default. If instead an obfield, which facilitated the label implementation.)

jectO hasLy = {c0, 1}, thenLy(c) =0< 1= Ly(c), A thread that allocates a category is granted ownership
and no information can flow froni to O/, meaning the of that category. We note this is a significant departure
thread cannot write to or modify the object. from traditional military systems, which use categories

Any given category in an object’s label restricts ei- but typically support only a fixed number that must be
ther reading or writing the object, but not both. (It is, assigned by the privileged security administrator.
of course, common to restrict both by using two cate-
gories.) While conventional operating systems can eil1 Example
ther permit or prohibit read access to an object such a&keturning to the virus scanner example, Fidlre 4 shows
a file, HiStar allows a third option: permit a thread to a simplified version of the labels that would arise if a hy-
read an object so long as it does not untaint the dat@othetical user, “Bob,” ran ClamAV on HiStar. Before
or export it from the machine. In some cases, such agven launching the virus scanner, permissions must be
VPN isolation discussed in Sectibnl.3, it is convenientset to restrict access to Bob's files—otherwise, the up-
to make read without untainting the default permissiondate daemon could directly read Bob's files and transmit
for a given category. Therefore, HiStar supports two lev-them over the network. In Unix, Bob’s files would be
els more tainted than the defauttand3. The difference protected either by setting file permission bits to 0600 or
arises because threads may chose to taint themselves iy running the update daemon irtlrootjail. In HiStar,
read more tainted objects, but only up to another labelabels can achieve equivalent results.
called theirclearance which defaults td 2}. The equivalent of setting Unix permissions bits is for
The final taint level isc (“Star”). It signifies untaint- Bob to allocate two categoriels, andb,, to restrict read
ing privileges within a category, and may appear only inand write access to his files, respectively. Bob labels his
a thread or gate label. Roughly speaking, when a threadata{b, 3, b0, 1}. Threads that ow, can read the
is at levelx in a particular category, the kernel ignores data, sdo; acts like a read capability. Similarly, acts
that category in performing label checks for operationslike a write capability. The authentication mechanism

described in Sectidn@.2 grants Bob’s shell ownership of We can now precisely specify the restrictions imposed

the two categories whenever he logs in. by HiStar when a thread labeledLt attempts to access
The wrap program is invoked with all of Bob’s an objectO labeledLo:

privileges—in particular with ownership df;, the cat-

egory that restricts read access to Bob’s filesap al-) T o _

locates a new category, to isolate the scanner, creates ® T can modifyO, which in HiStar implies observing

a private/tmp directory writable at taint leve3 in cat- O, onlyif Lt C Lo E Ly (i.e., “no write down”).

egoryv, then launches the scanner taingth category — These two basic conditions appear repeatedly in our de-

v. Thev taint prevents the scanner, or any process it Crescription of HiStar’s abstractions.

ates, from communicating to the update daemon or net- | apels form a lattice [4] under the partial order of the

work, except through wrap (which has untainting privi- C relation. We writel; LI L to designate the least upper

leges inv). Thev taint also prevents the scanner, or any hound of two labeld; andL,. The labelL = L; UL, is

program it spawns, from modifying any of Bob’s files, given byL(c) = max(L1(c),L2(c)). As previously men-

because those files are all less tainted (at the default |evgbned, threads may choose to taint themselves to observe

e T can observ® only if Lo C L5 (i.e., “no read up”).

of 1) in categoryv. more tainted objects. To observe an objéctabeled
) Lo, a threadr labeledLt must raise its label to at least
2.2 Notation ' = (L ULo)*, because that is the lowest label satisfy-

Almost every operation in HiStar requires the kernel toing bothLy C Lt andLo C LY.
check whether information can flow between objects. In
the absence of level, information can flow from anob- 3 KERNEL DESIGN

ject labeled. to one labeled only if Lo is atleast as ag previously mentioned, the HiStar kernel is organized
_talnted ad i in every category. This relatlonshlp IS SO around six object types. Every object has a unique, 61-
important that we introduce a symbdl, to denote it: bit object ID, alabel, aquotabounding its storage usage,
) 64 bytes of mutable, user-definetttadatgused, for in-
LiCLly iff Ve:li(c) <La(c). stance, to track modification time), and a féags such
as animmutableflag that irrevocably makes the object
Levelx complicates matters since it represents ownerread-only. Except for threads, objects’ labels are speci-
ship and untainting privileges rather than taint. A threadfied at creation and then immutable. Some objects allow
T whose labeLt maps a category to levelcan ignore efficient copies to be made with different labels, which is
information flow constraints on that category when read-yseful in cases that might otherwise require re-labeling.
ing or writing objects. When comparirigr to an ob- An object’s label controls information flow to and
ject's label, thex must be considered either less than orfrom the object. In particular, the kernel interface was
greater than numeric levels, depending on context. Whegesigned to achieve the following property:
T readsan objectx should be treated as high (greater
than any numeric level) to allow observation of arbitrar-
ily tainted information. Conversely, wheh writes an
object,x should be treated as low (less than any numeric
level) so that information can flow froffi to objects at This is a powerful property. It provides end-to-end guar-
any taint level in the category. This shift from high to antees of which system components can affect which
low implements untainting. others without the need to understand either the compo-
Rather than have take on two possible values in label nents or their interactions with the rest of the system.
comparisons, we use two different symbols to represent To revisit the virus scanner example, suppose data
ownership, depending on context. The existingym- from the scanner, tainted3, was somehow observed by
bol represents the ownership level of a category when ithe update daemon, with a label ff}. It follows that
should be treated low. A new (“HiStar”) symbol repre- thewrap program—the only owner of—allowed this to
sents the same ownership level when it should be treatebdappen in some way, either directly or by pre-authorizing
high. This gives us a notation with six “levels,” ordered actions on its behalf (for instance, by creating a gate).
*<0<1<2<3<0. However, level is only usedin The privacy of the user’s data now depends only on the
access rules and never appears in labels of actual objectsrap program being correct, and not on the virus scan-
The shifting between levels and O required for un- ner. In general, we try to structure applications so that
tainting is denoted by superscript operatorand* that key categories are owned by small amounts of code, and
translatex to 0 and O to «, respectively. For exam- hence the bulk of the system is not security-critical.
ple, if L = {ax, b0, 1}, thenL"” = {a0O, b0O, 1} and Unfortunately, information flow control is not perfect.
L* = {ax*, bx, 1}. Tainted malicious software can leak information through

The contents of objedk can only affect objecB if,
for every categoryg in which A is more tainted than
B, a thread owning takes part in the process.

covert channels-for instance, by modulating CPU us- — Hard link

age in a way that affects the response time of untainted C/Contamer - — > Soft link
threads. A related problem is preventing malicious soft- \

ware from making even properly tainted copies of data

it cannot read. Such copies could divulge unintended [Gatej Threadj
information—for instance, allowing someone who just ; P

got ownership of a category to read tainted files that were Y 4 g
supposed to have been previously deleted. Restricting [Network Address| [(thread-local
copies also lets one limit the amount of time malicious | pevice Segment =~ - Space ™ Segment

software can spend leaking data over covert channels.

To prevent code from accessing or Copying inappro_FigL.Ire 5 Keme] object types in HiSta!Soft linksname objects by a
prate data, each thread haslaarancdabel,Specifying _Pevér conaner Dobect) conter ety e and et
an upper bound both on the thread’s own label and on thgented by rounded rectangles.
labels of objects the thread allocates or grants storage to.

In the virus scanner example, the update daemon cannghtegories created by other threads.
read Bob's private files, labelefb; 3, b, 0, 1}, because T may raise its own label through the system call
its clearance of 2} prevents it from tainting itself, 3. « int selt setlabel (labelt L)

HiStar has a single-level store—on bootup, the en- '
tire system state is restored from the most recent onWhich setsLt «— L so long ad.t £ L £ Cr. This can,
disk snapshot. This eliminates the need for trusted boofor example, lefl’ read a tainted objecT. can also lower
scripts to re-initialize processes such as daemons that dff clearance in any category (but not below its label), or
more traditional operating systems would not survive aincrease its clearance in categories it owns, using
reboot. It also achieves economy of mechanism by al-e int self setclearance(labelt C),
lowing the file gystem tq be implemented with the SaMehich setCr « C so long ad.t CCC (Cr LILY).
kernel abstractions as virtual memory. On the other hand, Lt andCr restrict the labeL of any objectT creates

persistence opens up a host of other issues, chief among {he ranget C L C Cr. Similarly, any new thread’
them the fact that one can no longer rely on rebooting QhatT spawns rﬁust_satiéﬂyr = Lo E Cy CCr
kill off errant applications and reclaim resources. ===

Indeed, resource exhaustion is a potentially trouble3.2 Containers

some issue for many systems (including Asbestos). Th@ecause HiStar has no notion of superuser yet allows any
ability to run a machine out of memory is at best a glaringsoftware to create protection domains, nothing prevents
covert channel and at worst a threat to system integritya buggy thread from allocating resources in some new,
HiStar’s single-level store at least reduces the problem tinobservable, unmodifiable protection domain. We must
disk-space exhaustion, since all kernel objects are wirritte ensure such resources can nonetheless be deallocated.
to disk at each snapshot and can be evicted from memory HiStar provides hierarchical control over object al-
once stably stored. HiStar prevents disk space exhausocation and deallocation throughantainerabstrac-
tion by enforcing object quotas. Quotas form a hierarchtion. Like Unix directories, containers holuard links
under top-level control of the system administrator—theto objects. There is a specially-designated root container
only inherent hierarchy in HiStar. which can never be deallocated. Any other object is deal-
The simplest kernel object is a segment, providing aocated once there is no path to it from the root container.
variable-length byte array—similar to a file in other op- Figure[B shows the possible links between containers and
erating systems. The rest of this section discusses othejther object types.
HiStar kernel object types. When allocating an object, a thread must specify both
31 Threads the co_ntainer i_nto _which to plac_e the object_ and a 32-byte
) descriptive string intended to give a rough idea of the ob-
As previously mentioned, each threddhas a labelt ject's purpose (much as the Uniscommand associates
and a clearanc€r. By default,T hasLr(c)=1and command names with process IDs). For example, to cre-

Cr(c) = 2 for most categories, but the system call ate a container, thread makes the system call
e catt createcategory(void) e id_t containercreate(id_t D, labelt L, char *descrip
pseudo-randomly chooses a previously unused category, int avoid types uint64t quoty).

¢, and setd 1(c) < » andCr(c) < 3. At that pointT Here D is the object ID of an existing container, into
is the only thread whose label maps$o a value below which the newly created container will be placed. (We
the system default cf. In this sense, labels are egalitar- useD for containers to avoid confusion with clearance.)
ian: no thread has any inherent privileges with respect td_ is the desired label for the new container, atebcrip

is the descriptive stringavoid.typesis a bitmask spec- 3.3 Quotas

ifying kernel object types (e.g., threads) that cannot bz ey ghject has guota which is either a limit on its
created in the container or any of its descendami®ta gy4raqeusageor the reserved value (which the root
is discussed in the next subsection. The system call SUGntainer always has). A container's usage is the sum of
: : ; g
ceeds only ifT can write toD (i.e.,Lt CLp E L) and o gnace used by its own data structures and the quotas

allocate an object of labél (i.e., Lt L L C Cr). of all objects it contains. One can adjust quotas with the
Objects can benreferencedrom containeD by any system call

thread that can write tB. When an object has no more))))
references, the kernel deallocates it. Unreferencing a® INtguotamove(id-t D, id t O, int64.tn),

container causes the kernel to recursively unreference thghich addsn bytes to bothO's quota andD’s usage.D
entire subtree of objects rooted at that container. must contairO, and the invoking threa® must satisfy
HiStar implements directories with containers. By Lt C Lp C L andLt C Lo C Cr. If n< 0, Lt must also
convention, each process knows the container ID of itssatisfyLo C L7 because the call returns an error wi@n
root directory and can walk the file system by traversinghas fewer thann| spare bytes, thereby conveying infor-
the container hierarchy. The file system uses a separataation abouDto T.
segment in each directory container to store file names. Threads and segments can both be hard linked
A threadT can create a hard link to segméin con- into multiple containers; HiStar conservatively “double-
tainerD if it can write D (i.e.,, Lt C Lp C L) and its charges” for such objects by adding their entire quota to
clearance is high enough to allocate objectSaiabel each container's usage. One cannot add a link to an ob-
(Ls C Cr). T can thus prolons life even without per- ject whose quota may subsequently change. The kernel
mission to modifyS. A threadT’ must not observe that enforces this with a “fixed-quota” flag on each object.
T has done this, however, unleEsould have otherwise The flag must be set (though a system call) before adding
communicated td'—i.e., Lt £ L}, (which need notbe a link to the object, and can never be cleared.
the case just becau3é has read permission @). Most We do not expect users to manage quotas manually,
system calls therefore specify objects not by ID, but byexcept at the very top of the hierarchy. The system li-
(container IDobject ID) pairs, calledcontainer entries brary can manage quotas automatically, though we do
For T’ to use container entryD,S), D must contain a not yet enable this feature by default.
link to Sand T’ must be able to read—i.e.,Lp C Ly
sinceT hadLy C Lp, this impliesLy C L},, as required. 3.4 Address spaces

Container entries let the kernel check that a thread hagvery running thread has an associated address space
permission to know of an object’s existence. When aobject containing a list of VA~ (S offsetnpagesflags
thread has this permission, it may also read immutablenappings. VA is a page-aligned virtual address=
data specified at the object’s creation. In particular, for(D,O) is a container entry for a segment to be mapped
any objec(D,O), if T can read, thenT can also read at VA. offsetandnpagescan specify a subset &to be
O's descriptive string and, unle€sis a threadQ's label. mapped flagsspecifies read, write, and execute permis-
(Since thread labels are not immutablecan only read sion (and some convenience bits for user-level software).
the label of another threal’ if L}, C L;.) By exam- Each address spack has a labela, to which the
ining the labels of objects more tainted than themselvesysual label rules apply. Threadl can modify A only
threads can determine how they must taint themselves if Lt C Ly C L¥, and can observe or usk only if

they wish to read those objects. La C LY. When launching a new thread, one must spec-
As a special case, every container contains itself. Aify its address space and entry point. The system call
threadT can access containBras(D,D) whenLp C L%, self setasalso allows threads to switch address spaces.

even if T cannot readD’s parent,D’. (The root con- When thread takes a page fault, the kernel looks up the
tainer has a fake parent label¢d@}, and must always faulting address ifT’s address space to find a segment
be referenced this way.) One consequence is that i6= (D,0) andflags If flagsallows the access mode,
Lo Z Lp, a thread with write permission diY but not the kernel checks that can read andO (Lp C L7 and

D can nonetheless deallocdiein an observable way. Lo C L7). If flagsincludes writing, the kernel addition-
By makingD less tainted than its parent in one or more ally checks thaf can modifyO (Lt C Lo). If no map-
categories, the threall that created effectively pre- ping is found or any check fails, the kernel calls up to a
authorized a small amount of information to be transmit-user-mode page-fault handler (which by default kills the
ted from threads that can delddgo threads that can use process). If the page-fault handler cannot be invoked, the
D. Fortunately, the allocation rulek C Ly C Ly, and thread is halted.

Lt C Lp C Cy/) imply that to create such@ in D, T’ Every thread has a one-page local segment that can be
must own every categoryfor whichLp(c) < Lp/(C). mapped in its address space using a reserved object ID

meaning “the current thread’s local segment.” Thread-to their location on disk, and two B+-trees to maintain
local segments are always writable by the current threada list of free disk space extents. The first one is in-
They provide scratch space to use when other parts of thédexed by extent size and is used to find appropriately-
virtual address space may not be writable. For examplesized extents, and the other is indexed by extent loca-
when a thread raises its label, it can use the local segmetibn and is used to coalesce adjacent extents. Our B+-
as a temporary stack while creating a copy of its addresgrees have fixed-size keys and values—object IDs and
space with a writable stack and heap. disk offsets—which significantly simplifies their imple-

A system callthreadalert allows a thread”’ to send mentation. Write-ahead logging ensures atomicity and
an alert toT, which pushed'’s registers on an exception crash-consistency. Disk space allocation is delayed until
stack and vector3’s PC to an alert handler. To suc- an object is written to disk, making it easier to allocate
ceed, T’ must be able to writd's address spack (i.e., contiguous extents.

Lt CLaC LY) and to observé (i.e.,Lt C L3,)). These The kernel performs several key optimizations. It
conditions suffice foil’ to gain full control of T by re- caches the result of comparisons between immutable la-
placing the text segment W with arbitrary code, as well bels. When switching between similar address spaces,
as forT to communicate information t®'. it also invalidates TLB entries with thiavipg instruc-

35 G tion instead of flushing the whole TLB by re-loading the

. ates . A
i . page table base register. Timlpg optimization makes

Gates provide protected control transfer, allowing asjitching between threads in the same address space effi-

thread to jump to a pre-defined entry pointin another adjent: at worst, the kernel invalidates one page transiatio
dress space with additional privilege. A gate obf@¢tas o the thread-local segment.

agate labe) Lg (which may contain), aclearanceCg,)
and thread state, including the container entry otdn 41 Codesize
dress spacean initialentry point an initialstack pointer ~ One of the advantages of HiStar’s simple kernel interface
and somelosure argument® pass the entry point func- is that the fully-trusted kernel can be quite small. Our
tion. A threadT’ can only allocate a ga® whose label kernel implementation consists of 15,200 lines of C code
and clearance satisty; C Lg E Cg C Cy. (of which 5,700 lines contain a semicolon) and 150 lines
The threadr invoking G must specify a requested la- of assembly; this is roughly 45% fewer lines of C code
bel, Lg, and clearanceCr, to acquire on entryT also than the Asbestos kernel. The source code consists of the
supplies a verify labelly, to prove possession of cate- following rough components:
gories without granting them across the gate call. Gates 3,400 lines of architecture-specific code, implement-
invocation is permitted whetr C Cg, Lt C Ly, and ing virtual memory and threads.

: .
]EL% ULg)" ELrC .Cigf(CT l(-ljge) ':'he entry p0|nt| e 4,000 lines of code for B+-trees, write-ahead logging
unction can examinéy for additional access control. o1y et ersistence.

Note that thread labels are always explicitly specified by 3))))
e 3,000 lines of code for device drivers, including PCI

user code, and only verified by the kernel.
Gates are usually used like an RPC service. Un- SuPport, DMA-based IDE, console, and three net-
work drivers.

like typical RPC, where the RPC server provides the re-
sources to handle the request, gates allow the clientto doe 4,800 lines of code for system calls, containers, pro-
nate initial resources—namely, the thread object which filing, and other hardware-independent components.

invokes the gate. Arguments and return values are passed |n all aspects of the design we have tried to optimize
across the gate in the thread local segment. Gates can lgr a simpler and cleaner kernel. For example, IPC sup-
used to transfer privilege; for example, the login processport, aside from shared memory and gates, is limited to
described in Sectiofd.2, uses gates to obtain the users memory-based futekl [6] synchronization primitive, on
privileges. The use of gates in user-level applications isyhich the user-level library implements mutexes. The
discussed in more detail in Sectionls.5. kernel network API consists of three system calls: get
the MAC address of the card, provide a transmit or re-
4 KERNEL IMPLEMENTATION ceive packet buffer, and wait for a packet to be received
Our implementation of HiStar runs on x86-64 proces-or transmitted. There is no dynamic packet allocation
sors, such as AMD Opteron and Athlon64 CPUs. Theor queuing in the kernel, which simplifies drivers. Our
use of a 64-bit processor makes virtual memory an abunbMA-based Intel eepro100 driver is 500 lines of code,
dant resource, allowing us to make certain simplifica-compared to 2,500 in Linux and OpenBSD (not includ-
tions in our design, such as the use of virtual memorying their in-kernel packet allocation and queuing code).
for file descriptors, described in the next section. When hardware support for 10 virtualization becomes

The single-level store is inspired by XF|§_[24]. It uses available, we expect to move many device drivers out of
a B+-tree to store an on-disk mapping from object IDsthe fully-trusted kernel.

5 USER-LEVEL DESIGN A directory is a container with a specidirectory seg-
Unix provides a general-purpose computin environmen[ﬂemmapping file names to object IDs. Directory op-
b 9 burp puting erations are synchronized with a mutex in the directory

familiar to many people. In designing HiStar’s user-level . . - .
) : S . segment; for example, atomic rename within a directory
infrastructure, our goal was to provide as similar an envi-; - .)
) . . is implemented by obtaining the directory’s mutex lock,
ronment to Unix as possible except in areas where there .= .
: . modifying the directory segment to reflect the new name,
were compelling reasons not to—for instance, user au- . . X
T - . . and releasing the lock. Users that cannot write a direc-
thentication, which we redesigned for better security. As : : .
. . . : ; tory cannot acquire the mutex, but they can still obtain
a result, porting software to HiStar is relatively straight
' . . . a consistent view of directory segment entries by atom-
forward; code that does not interact with security aspects

such as user management often requires no modificatiorllCaIIy reading a generation number and busy flag before

The bulk of the Unix environment is provided by a and after reading each entry. The generation number is

Lo : _ incremented by the library on each directory update.
port of the u(_:l_|bc I|brz_;1ry [25] to Histar. The HiStar The container ID of the/ directory is stored by the
platform-specific code is a small layer underneath UC“bCUnix library in user space and passed to child processes
that emulates the Linux system call interface, compris-

ing approximately 10,000 lines of code and providing across fork and exec. The library also maintaims@unt
abstractions like file descriptors, processes, fork an able segmentvhich mapsidirectory,name pairs onto

exec, file system, and signals. Two additional services— bject IDs. The library overlays mounted objects on di-

networking and authentication—are provided by se a_rectories, much like Unix. Like Plan 9, a process may
working u cation—are provi y sep copy and modify its mount table, for example at user lo-
rate daemons. A daemon in HiStar is a regular proces

that ¢ . tekor oth ain. The kernel has aontainergetparentsystem call
toiocr;erﬁuensi:;tz \c/)vr| t?%ﬁgﬁ%%%iik; cf)asiric;))rzocesses which is used to implement parent directories.
- L Since file system objects directly correspond to HiStar
It is important to note that all of these abstractions are

) . : o rnel objects, permissions are specified in terms of la-
provided at user level, without any special privilege from bels and are enforced by the kernel, not by the untrusted
the kernel. Thus, all information flow, such as the exit ’

. . S . user-level file system implementation. The label on a
status of a child process, is made explicit in the Unix li y ’

e - " file segment is typically{r 3, w0, 1}, where categories
brary. Avulnerabilityin the Un!x library, such as a bug in r andw represent read Zl{nd write pr}ivilege on that file, re-
the file system, only compromises threads Fh_at trigger th(JSpectiver. Labels are similarly used for directoriesgdea
bug—an gttacker can pnly exercise the privileges of th rivilege on a directory allows listing the files in that di-
compromised thrggd, likely causing far Igss Qamage tha ctory, and write privilege allows creating new files and
a kernel vulnerability. An untrusted application, such asrenaming or deleting existing files.

a virus scanner, can be isolated together with its Unix

library, allowing for control over Unix vulnerabilities. 5.2 Processes

We have ported a number of Unix software packagesa process in HiStar is a user-space convention. Fig-
to HiStar, including GNU coreutils (Is, dd, and so on), yre[illustrates the kernel objects that make up a typical
ksh, gcc, gdb, the links web browser and OpenSSH, irprocess; although this may appear comple, it is imple-
many cases requiring little or no source code modificamented as untrusted library code that runs only with the
tions. The rest of this section discusses the design a”ﬁrivileges of the invoking user.
imp|ementati0n of our Unix emulation ”brary. Each proces§> has two Categorieq)r and Pw, that

. protect its secrecy and integrity, respectively. Threads
5.1 FileSystem in a process typically have a label ¢py*, pwx*, 1},
The HiStar file system uses segments and containers tgranting them full access to the process. The process
implement files and directories, respectively. Each fileconsists of two containers: a process container and an
corresponds to a segment object; to access the file cointernal container. The process container exposes ob-
tents, the segment is mapped into the thread’s addregscts that define the external interface to the process: a
space, and any reads or writes are translated into mengate for sending signals and a segment to store the pro-
ory operations. The implementation coordinates with thecess’s exit status; not shown is a gate used by gdb for
user-mode page fault handler to return errors rather thadebugging. The process container and exit status seg-
SIGSEGYV signals upon invalid read or write requests.ment are labeledp,,0, 1}, allowing read but not write
A file’s length is defined to be the segment’s length.access by threads of other processes (which do not own
Extending a file may require increasing the segment'spy). The signal gate has labgp, x, pw*, 1} and allows
guota, which is done through a gate call if the enclos-other processes to send signals to this process. The in-
ing container is not writable in the current context. Ad- ternal container, address space, and segment objects are
ditional state, such as the modification time, is stored inabeled{ p; 3, pw0, 1}, preventing direct access by other
the object’s metadata. processes.

Process Container Exit Status Segment Proces$ DaemorD
{pw0, 1} {pw0, 1} {pw0, 1} {dwO, 1}
\ Signal Gate
{pr*, pwx, 1} Return Gate Service Gate
{pf *, Pw*, l} {dl’ *, dW*7 1}
Clearance{r0, 2} Clearance{2}
Internal Container Thread T T
{pr3, pw0, 1} {pr*, pwx, 1} | _ | _
- .| Internal Containef . | Internal Containef
; 1 {pr 3 pw0, 1} ' {dr 3. dwO, 1}
. . | |
File Desoriptot T3 yrecs Yoo Y Y
9 | _-71 Space Address_ .. Segments Address_ . Segments
P Space Space
Stack SegmeBt P T
P e P 7 Va A o |
Heap Segmeﬂt‘ R ' L I
- \ ThreadTp h !
Executable Filgy” (AP pwx, rx, 1)) : 2]
Segment | (ThreadTp
. . N h (3] § {dr %, dwx, r*, 1}
Figure 6: Structure of a HiStar process. A process container is repre
sented by a thick border. Not shown are some label componiesits (ThreadTp j
prevent other users from signaling the process or readingxit status. {prx, pwx, I+, 1}

. . Figure 7: Objects involved in a gate call operation. Thick borders
53 File Descrlptors represent process containensis the return categoryd, andd, are
Eile descriptors in HiStar are implemented in the user_the process read and write categories for daeBohhree states of the
- . . same thread objed}, are shown: 1) just before calling the service gate,
space Unix I|brary. All of the state typ|caIIy associated 2) after calling the service gate, and 3) after calling tharregate.
with the file descriptor, such as the current seek position

and open flags, is stored irfie descriptor segmenEv- eyery access control group.) The authentication service,
ery file descriptor number corresponds to a specific Vir-yhich verifies user passwords and grants user privileges,

tual memory address. When a file descriptor is open ing described in more detail in Sectibils.2.
a process, the corresponding file descriptor segment is

memory-mapped at the virtual address for that file de2-2 Gate Calls
scriptor number. Gates provide a mechanism for implementing IPC. As an
Typically each file descriptor segment has a label ofexample, consider a service that generates timestamped
{f: 3, fw 0, 1}, where categorief andf,, grantread and signatures on client-provided data; such a service could
write access to the file descriptor state. Access to thde used to prove possession of data at a particular time.
descriptor can be granted by setting a thread’s label téA HiStar process could provide such a service by cre-
{frx, fw*, 1}. Multiple processes can share file descrip-ating aservice gatevhose initial entry point is a func-
tors by mapping the same descriptor segment into theition that computes a timestamped signature of the input
respective address spaces. By convention, every procegata (from the thread-local segment) and returns the re-
adds hard links for all of its file descriptor segments tosult to the caller. Gates in HiStar have no implicit return
its own container. As a result, ownership of the file de-mechanism; the caller explicitly createsedurn gatebe-
scriptor is shared by all processes holding it open, andore invoking the service gate, which allows the calling
a shared descriptor segment is only deallocated when ihread to regain all of the privileges it had prior to call-
has been closed and unreferenced by every process. ing the service. Aeturn category ris allocated to pre-
vent arbitrary threads from invoking the return gate; the
5.4 Users return gate’s clearance requires ownership of the return
A pair of unique categoriag anduy, define the read and category to invoke it, and the caller grants the return cat-
write privileges of each Unix usar in HiStar, includ- egory when invoking the service gate. Figlife 7 shows
ing root. Typically, threads running on behalf of user such a gate call from proceBso daemorD.
U have a label containing; x, uy*, and users’ private Suppose the caller does not trust the signature-
files would have a label ofu, 3, uy0, 1}. One conse- generating daemoB to keep the input data private. To
guence of this design is that a single process can posnsure privacy, the calling thread can allocate a new taint
sess the privilege of multiple users, or perhaps multiplecategoryt and invoke the service gate with a label of
user roles, something hard to implement in Unix. On the{d; x, dy*, r %, t 3, 1}—in other words, tainted in the new
other hand, our prototype does not support access corcategory. A thread running with this label bis address
trol lists. (Doing so would probably require a gate for space can read any bfs segments, but not modify them

(which would violate information flow constraintsin cat- The network device is typically labelefh; 3, ny0,
egoryt). However, the tainted thread can make a taintedj 2, 1}, wheren; andny, are owned by netd, andaints
and therefore writable, copy of the address space and itall data read from the network. Because netd cannot by-
segments and continue executing there, effectif@ly- pass the tainting with or leak tainted data in other cat-
ing D into an untainted parent daemon and a taintecegories, it is mostly untrusted. A compromised netd can
child. Unable to divulge the caller’'s data, the thread canonly mount the equivalent of a network eavesdropping or
still compute a signature and return it to the caller. Uponpacket tampering attack.

invoking the return gate, the thread regains ownership o . .

categoryt, allowing it to untaint the computed signature. %8 Explicit Informatlon Leak_s _

Resources for the tainted child copy must be chargedNix was not designed to control information flow. Em-
against some object’s quota. They cannot be charged tglating certaln gspects therefore requires information
D’s container, because the thread lacks modification perl€@ks. HiStar implements these leaks at user level,
mission when taintet3 (otherwise, it could leak infor- through explicituntainting gates By convention, when
mation about the caller’s private data®). Therefore, SPawning a tainted threadlor talntlng a thread thrqugh a
before invoking the gate, the calling thread creates a condate call, user code supplies the tainted thread with the
tainer it can use once insid2. In this exampleT, cre- ~ container entry of an untainting gate. The new thread
ates a container labeled 3, r0, 1} inside P's internal ~ €an invoke this g.a'Fe to leak certf';un kinds of information,
container. such as the fact it is about to exit (so the parent shell can

Forking on tainted gate invocation is not appropri- reclaim resources and return to the command prompt).

ate for every service. Stateless services such as tHaOt all categories have untainting gates; whether or not
timestamping daemon are usually well-suited to forking,[© Créate one is up to the category’s owner.

whereas services that maintain mutable shared state may Currently our Unix library provides untainting gates
want to avoid forking by refusing tainted gate calls. for up to three operations: process exit, quota adjust-
ment, and file creation. Of these, file creation has by

56 Signals far the biggest information flow, declassifying the name

))) of the newly created file. Low-secrecy applications con-
Signals are implemented by sending an alert to a thréagerned only with accidental disclosure allow these op-
in a process, passing the signal number as an argumegiagions. Higher-secrecy applications may choose to set
to the alert handler. The alert handler invokes the approfixed quotas for tainted objects and only declassify pro-

priate Unix signal handler for the raised signal. How- cags exits. The next section shows examples of such ap-
ever, sending an alert requires the ability to modify theplications.

thread’s address space object, which, becaupg,ainly
other threads in the same process can do. Therefor§§ APPLICATIONS

to support Unix signals, each process expossgyaal

gatein its process container. The gate has a label of-l.-he Unix environment described in the previous sec-
{Pr %, pw, 1} and an entry function that sends the ap_t|on allows for.general—purp_ose c_:omput.mg_on H|S_3tar, but
propriate alert to one of the threads in the process de(-joes n_ot provw!e any functionality qua!|tat|vel)_/ diffeten
pending on the requested signal number. The clearancféOm L|n_ux. H|Stgrs key ad_vantage Is that it gnables
on the signal gate i§uy0, 2}, whereuy corresponds to novel, high-security applications to run alongside a fa-

the user that is running this process. As a result, onl)fn.Illar Unix environment. This section presents some ap-

threads that possess the user’s privilege can send signe{r:fgcat";?zrf?ei[;ﬂ;et :g%’%nftag gLTIS'tgglt(L)Jrl?'rO\s”ds?esrigu-
to that user’s processes. ity gu lev yp! iX sy :

6.1 Anti-Virus Software

5.7 Networking We have implemented an untrusted virus scanner, as sug-
HiStar uses the IWIPEiZ] protocol stack to provide gested in several examples, by porting ClamAv [3] and
TCP/IP networking. IwIP runs in a separaietdprocess using thewrap program to run it in isolation. To pro-
and exposes a single gate that allows callers to performide strong isolationwrap does not create the standard
socket operations. Operations on socket file descriptor§nix untainting gate for category wrap also limits the

are translated into gate calls to the netd process. Bymount of data that can be leaked through covert chan-
default, netd’s process container is mountedrextd in nels by killing ClamAV after some period of time.

mount tables. As an optimization, a process can create a ClamAV and its database must be periodically updated
shared memory segment with netd and donate resourcés keep up with new viruses. In HiStar, the update pro-
for a worker thread to netd. Subsequent netd interactionsess runs with the privilege to write the ClamAV exe-
can then use futexes to communicate over shared mentutable and virus database; however, it cannot access pri-
ory, avoiding the overhead of gate calls. vate user data. Even if a compromised update installs ar-

10

username,
assword - directory gate list of users
User 1" (login @™ (" Directory @ {drdiny {03, dy0, 1}
ogin Service 2 : :
User Auth S o
Service \)6@\0 QQQ
T, Session ctnr, grantss, (2)

login I setup gatle
{5, Sw*}J Creates categoryand three @W*’ }
objects in session container
User i Logging retry count segment
Auth Service Service (73, u,0, 1}
B _ o © o)
Figure 8: A high-level overview of the authentication system. *
£ check gate
X {ur *, uw* X*, T; 3, 1}
bitrary code in place of ClamAV, the label set byap
when running ClamAV ensures that private information
b ted password segmen
cannot be exported. o (U3, uy0, 1}
6.2 User Authentication grant gate w -
A . . {Ur %, Uy*, 1} authenticatiol
User authentication provides a good example of how Hi- Clearance{x0, 2} log

Star can minimize trusted code. Most operating systems
require a highly-trusted process to validate authenticarigure 9: A detailed view of the interactions between authenticatio
tion requests and grant credentials. For example, theystem components. The setup gate, check gate and gran2g@e
Unix login program runs as superuser to set the approprla”d 4) are all part of the user’s authentication service.
ate user and group IDs after checking passwords. Even
a privilege-separated server such as OpenSSH required® asking the directory for a particular username. The di-
superuser component to be able to launch shells for sudectory responds with the container entry of a gate to the
cessfully authenticated users. user’s authentication service. The directory is contublle
In contrast, HiStar authenticates users without anyPy the system administrator, but is untrusted except min-
highly-trusted processes, and allows users to supply theifmally by login and the logger as described above.
own authentication services. Even if a user accidentally Each user runs an authentication service daemon that
provides his or her password to a malicious authenticaowns u; and uy; the daemon’s job is to grant those
tion service, HiStar ensures that only one bit of informa-categories to login clients that successfully authergicat
tion about the user’s password is leaked. Providing suclthemselves. Conceptually, this is simple: login sends the
isolation under a traditional operating system would bepassword to the authentication service, which checks it
difficult. and, if correct, grants, anduy, back to login. Since the
Figure[® shows an overview of the HiStar authentica-authentication service is under the user’s control, it can,
tion facility. Logically, four entities coordinate to awth- ~ at the user’s option, support non-password techniques
ticate a user: a login client, a directory service, a per-usesuch challenge-response authentication.
authentication service, and a logging service. Of these, The complication is that login does not trust the au-
the logging service is simplest; the directory and user authentication service with the user’'s password. After all,
thentication services trust it to maintain an append-onlya mistyped username or malicious directory could con-
log, while it trusts them not to exhaust space with spuri-nect login to the wrong authentication service. Even the
ous entries. right service might be compromised, which should re-
The login client initiates authentication. It typically veal only the user’s password hash, not his password.
consists of an instance of the web serversehdthat With challenge-response authentication, a similar man-
knows a username and password and wishes to gain owiR-the-middle threat exists. The solution is for login to
ership of the user’s read and write categorigsandu,. invoke the authentication service three times: first to set
Login minimally trusts the directory to interpret the user- things up, second to check the password, and third to fi-
name properly (without which authentication could fail nally gain ownership ofir anduy. The second step runs
or return the wrong credentials). However, login doestainted, thereby protecting the secrecy of the password.
not trust the other components, and importantly does not Figure[® shows the authentication sequence in more
trust anyone with the user’s password. Conversely, naletail. In Step 1, login learns of the appropriate user’s
other component trusts login until it authenticates itself setup gate from the directory service. Then it allocates
The directory service maintains a list of user accountstwo categories7s, the password read category, protects
Its job is to map usernames to user authentication serthe password from disclosure. Thg category controls
vice daemons. Login begins the authentication proceswrrite access to dogin session containemvhich login

11

login session containe grant gate create the retry count segment. Then, before invoking

{840, 1} céZ’rQ’nﬁZ&é}Z} the setup gate, login creates a code segment containing
: the code of the previously agreed-upon function, as well
as a gatés that invokes this code with a clearanceap8B.
retry count segment check gate e .
{753, uy0, 1} ({Ur %, Uy, X%, 1} j Additionally, login marks the code segment and address

space objects invoked by asimmutablein the kernel.
Figure 10: Objects created by the user’s setup gate in the session conBecause these objects are immutable, the user’s setup

tainer. gate code can verify their contents and be assured that
_ invoking G with uyx will execute only the agreed upon
creates with labe{s,0, 1}. code and not somehow result in login usurping owner-

_In Step 2, login invokes the user's setup gate, grantgpip ofy,, In this manner, two mutually-distrustful par-
ing the user's codey x. The setup gate logs the authen- ties can safely execute mutually agreed-upon code with
tication attempt and allocates a new categesyto be heir combined privilege.

grante_d to login after successful authentlcapon. Before The authentication service implementation is fairly
returning, the setup gate code (together with login, agma|l. The logging service comprises 58 lines of code;
we will discuss later) creates three objects in the sessiog,q directory service comprises 188 lines, and the stan-
container, shown in Figule]L.0. The firstisetry count 4514 password-based user authentication service com-
segmentused to bound the number of password guessegises 233 lines of code. Common library code that al-
per logged invocation of the setup gate. The second igyys combining privileges to create the retry count seg-
an ephemeraiheck gateused to check passwords while ment s 370 lines of C++ code, and the mutually agreed-
tainted; its closure arguments specify the object ID of 45 code to create the retry count segment is 30 lines
the retry count segment. The third is an ephemgraht 4 45sembly. Aside from security, another advantage of
gatewith clearance{x0, 2}. privilege-separating authentication is that the processe

In Step 3, login calls the check gate with the password¢ap keep relatively small labels, improving the perfor-
tainting the threadt 3. If the password is correct and mance of label operations.

the retry count okay, the gate code graxnksmck to login.
(Optionally, the check gate may accept a verify label of6.3 VPN Isolation
{root,, 0, 3} instead of a password, to emulate a Unix Many networks rely so heavily on firewalls for secu-
users’ trust of root.) Once login ownsit calls the grant rity that the prospect of bridging them to the open In-
gate in Step 4 to obtaio: anduy. The grant gate logs ternet poses a serious danger. Indeed, this is how
the authentication success before returning, which is whyhe Slammer worm disabled a safety monitoring sys-
it must be separate from the tainted check gate, whichem at a nuclear power plant in 20@[19]_ At the
cannot talk to the logging service. same time, it has become quite common for people to
In Step 2, creating the retry count segment, which isconnect home machines and laptops to otherwise fire-
labeled{ 3, uy0, 1}, requires combining the privileges walled networks through encrypted virtual private net-
of two mutually-distrustful entities: login, with a clear- works (VPNs). When VPNs let the same machine con-
ance ofrg 3, and the user’s code, with a label ofx. nect to either side of a firewall, they risk having malware
The user’s code will not gramk,+ to login before a suc- either infect internal machines or (as the Sircam worm
cessful authentication. Similarly, login does not trust th did) divulge sensitive documents to the world.
user’'s setup gate code with a clearancegd. In HiStar, however, one can track the provenance of
To see why login cannot invoke the setup gate withdata with labels and precisely control what flows be-
a clearance oft 3, consider what malicious setup gate tween networks. The bootstrap procedure already labels
code can do given such a clearance: It can create a longhe network device to taint anything received from the
lived segmens labeled{r 3, u; 3, 1}, and a long-lived Internet{i2, 1} and block from transmission anything
threadT labeled{ 3, ur %, 1}. Both can be in a con- more tainted. One can analogously label all VPN input
tainer inaccessible to login. The setup code can further{v2, 1} and block any more tainted VPN output. Such a
more point the check gate to a “trojaned” variant of the configuration completely isolates the two networks from
password checker that writes the passwor8.t&inally, each other except as specifically permitted by the owners
T can readS and leak the password through a covertofi andv. For example, users might be allowed to untaint

channel over a long period of tim&. andSwill persist i (meaning import external data) when the file passes a
long after login has destroyed all objects it knows aboutvirus checker, such as the one in Secfion 6.1.
with a clearance ofg 3. We have implemented VPN isolation around the pop-

To solve this problem, the developers of the user’s auular OpenVPN packagb [116]. Figurel11 shows the com-
thentication service and the login client agree ahead oponents of the system and their labels: The VPN runs
time on a function that both of them want to execute toa second IwlIP stack which talks to the OpenVPN client

12

VPN WIP stack Web Browser Benchmark | HiStar | Linux | OpenBSD
{v2,1} {v2,1} IPC benchmark, per RTT | 3.11usec | 4.32usec | 2.13pusec
¢ Fork/exec, per iteration 1.35msec| 0.18 msec| 0.18 msec
; Fork/exec, dynamic linking — 0.45 msec| 0.38 msec
\{/_PN C"i’}“ Spawn, per iteration 0.47 msec — —
1%, V.
= LFS small, create, async 0.31sec | 0.316sec| 0.22sec
¢ ... per-file sync 459 sec 558 sec —
Internet IwIP stack Web Browser ... group sync 2.57 sec — —
%, N, 12, 1} {i2, 1} LFS small, read, cached 0.16sec | 0.068sec| 0.14sec
...uncached 6.49 sec 1.86 sec —
¢ ...no IDE disk prefetch 86.4sec | 86.6 sec —
Kernel Network Device LFS small, unlink, async 0.090 sec| 0.244sec| 0.068 sec
{n:3,ny0,i2 1} ... per-file sync 456 sec 173 sec —
...group sync 0.38 sec — —
Figure 11: Secure VPN application. The VPN client is trusted to taint LFS large, sequential write] 2.14 sec | 3.88 sec —
incoming VPN packets witlfv2}, reject any outgoing packets tainted - - - Sync random write 93.0sec | 89.7sec —
in categoryi, and properly encrypt/decrypt data. The kernel network LFS large, uncached read | 1.96sec | 1.80 sec —

device is completely trusted. Neither of the IwlP stacksusted. Figure 12: Microbenchmark results on HiStar, Linux and OpenBSD.
over atundevice. Porting OpenVPN to HiStar required
implementing a tun character device in the file system li

brary (200 lines of code) and a tun “device driver” for .) . .
. and an ext3 file system; the third ran 32-bit OpenBSD
wIP (100 lines of code). OpenVPN swaps betwaen 3.9 1386 with an in-memorynfsfile system—a 64-bit

andi taints on the data it _encrypts. User_s select WhIChversion of OpenBSD 3.8 for amd64 performed strictly
network to use by mounting the appropriate IwIP pro-

cess onnetd(much like Plan 9). Not shown are untaint- worse in every benchmark. We did not run synchronous

ing gates, which for this application allow processes toflle system benchmarks under OpenBSD, because we

. : : . .could not disable IDE write caching.
leak exit, quota, and file creation events, as discussed in g

Sectiof3B. , _ , 7.1 Microbenchmarks
VPN isolation is interesting because it applies a broad -)
policy potentially affecting most processes in the system |0 €valuate the performance of SpeCIfIF) aspects of Hi-
yet requires only a localized change. This would be diffi-St&f, We chose four microbenchmarks: LFS small-file
cult to achieve in a capability-based system, for instance2"d large-file benchmarks {20], an IPC benchmark which
measures the latency of communication over a Unix pipe,

6.4 Web Services and a fork/exec benchmark that measures the latency
The original motivating application for Asbestos was its of executing/bin/true using fork and exec. All mi-
web server, which isolated different user's data to tol-crobenchmarks antbin/true were compiled statically
erate buggy or malicious web service code. We haveo eliminate dynamic linking overhead. Figlirtd 12 shows
built a similar web server for HiStar, with a few dif- the performance of the four microbenchmarks on three
ferences. HiStar's connection demultiplexer controls re-different operating systems.

sources granted to each worker daemon through con- For the IPC benchmark, two processes are created,
tainers. Authentication uses an instance of the daemooonnected by two uni-directional pipes; each process
described in Sectiol8.2. HiStar also has an experisends any messages it receives back to the other pro-
mental privilege-separated database; unlike the Asbestasess. The benchmark measures the average round-trip
database, it does not support standard SQL queriesime taken to transmit an 8-byte message, over one mil-
(Whether it will prove general enough for most web lion round-trips. HiStar performs better than Linux in
services is still an open question.) Since the benethis benchmark, but somewhat slower than OpenBSD.
fits of Asbestos-style web services have been reported HiStar's performance noticeably suffers in the fork
elsewhere, this paper concentrates on other applicationsnd exec microbenchmark. In part, this is because Linux
whose architecture is more unique to HiStar. and OpenBSD pre-zero memory pages, which HiStar
does not yet do. Moreover, while OpenBSD and Linux
7 PERFORMANCE require 9 system calls to fork a child, have the child ex-
To evaluate the performance implications of HiStar’s ar-ecute/bin/true, have/bin/true exit, and have the
chitecture, we compared it to Linux and OpenBSD un-parent wait for the child, the same workload requires
der several benchmarks. The benchmarks ran on thregl7 system calls on top of HiStar’s lower-level interface.
identical systems, each with a 2.4 GHz AMD Athlon64 However, the flexibility provided by a lower-level inter-
3400+ processor, 1GB of main memory, and a 40 GBface allows us to implement more efficient library calls,
7,200 RPM Seagate ST340014A EIDE hard drive. Thesuch asspawn which directly starts a new process run-

first machine ran HiStar; the second ran Fedora Core
“5 Linux with kernel version 2.6.16-1.2088C5 x8664

13

ning a specified executable. Thpawnfunction runs 3 ~ Benchmark | HiStar | Linux | OpenBSD

times faster than the equivalent fork and exec combinaBuilding HiStar kernel 6.2sec| 4.7sec | 60sec
fi . . v 127 t I iterati Wi t Transferring 100MB with wget| 9.1sec | 9.0 sec 9.0 sec
1on, 1ssuing only system calls per iterauon. vve no e\ﬁrus-checking a 100MB file | 18.7 sec| 18.7 sec| 21.2sec

that use of dynamic linking would reduce the relative per- . .. with isolation wrapper 18.7sec| — —
formance difference between HiStar and Linux.

The LFS small file benchmark creates, reads, and un-

Ii_nks 10,000 1kB-sized files and reports the total running ages to be flushed to disk (modified in-place) without
time for each of these three phases. We measured dikheckpointing the entire system state. As a result, the
ferent variations of the phases, as shown in Fidllle 12parformance is again quite close to that of Linux, since
The asynchronous and cached variations show HiStagach random write involves flushing two 4KB pages to
has comparable performance to the other systems for resisk both in Linux and in HiStar.
quests that go to cache. The uncached read phase mea-The third phase of the large-file benchmark tested read
sures the time to read 10,000 small files from disk. Hereyerformance by sequentially reading the 200MB file in
Linux significantly outperforms HiStar, averaging less gkg chunks. The performance is approximately the
than 1/10th the disk’s 8.3 msec rotational latency to readgame petween HiStar and Linux. Currently the HiStar
each f|!e. We attrll_aute this performar_me to read |°_°k'prototype does not support paging in of partial segments,
ahead in the IDE disK_[22], because Linux clusters filessg the entire 100MB file segment is paged in when the
from the same directory while HiStar does not. Disablingfjje js first accessed—a limitation we plan to address in
lookahead, HiStar and Linux perform comparably. the future. As a result, the performance of random reads
In the synchronous unlink phase, HiStar performs sig-differs little from the sequential case.
nificantly worse than Linux. This is because we imple- o
mentfsyncof a directory by checkpointing the entire sys- /-2 Application Performance
tem state to disk, whereas Linux only writes out the mod-For an application-level benchmark, we built the HiStar
ified directory entry. Synchronous file creation in HiStar kernel using GNU make 3.80 and GCC 3.4.5 on the three
also checkpoints the entire system state; however, its petperating systems; Figurel13 summarizes the results. Hi-
formance is comparable to Linux because ext3 performstar is somewhat slower than Linux and comparable to
more writes in this case. Write-ahead logging allows Hi-OpenBSD. In HiStar, most of the CPU time in this
Star to achieve acceptali/ncperformance by queuing benchmark is spent in user space. Since most of our op-
updates in a sequential on-disk log. Logged updates argmization efforts to date have focused on the kernel, we
applied in batches; during each run of the synchronougxpect HiStar to improve on this benchmark as we move
small file benchmarks, the contents of the on-disk logto optimizing the Unix library.
were applied to disk about 10 times (once for approxi- HiStar also achieves good network throughput. When
mately every 1,000 synchronous operations). downloading a 100MB file using/get the results show
The single-level store offers a neywoup synaconsis- all three operating systems could saturate a 100Mbps
tency choice not possible under Linux. In group sync,Ethernet. Finally, we measured the time taken to check
the system state is checkpointed to disk only once at the 100MB file containing randomized binary data for
end of each benchmark phase. The single-level storgiruses using ClamAV, HiStar performs competitively
guarantees that the application either runs to complewith Linux and OpenBSD, both with and without the use
tion or appears never to have started. Using group synof the wrapper described in Sectibnl6.1.
in HiStar, some applications may achieve a significant
speedup over Linux, as high as a factor of 200 for appli-8 RELATED WORK

cations similar to the LFS small file benchmark. HiStar was directly inspired by Asbestos, but differs in
For the LFS large file benchmark, we evaluated thregyroviding system-wide persistence, explicit resource al-
phases. In the first phase, a 100MB file was created bypcation, and a lower-level kernel interface that closes
sequentially writing 8KB chunks, with a single call to known covert storage channels. While Asbestos is a
fsyncat the end of the phase. HiStar achieves close to thﬂqessage_passing system, HiStar relies heav”y on shared
maximum disk bandwidth of 58MB/sec [22]; we suspectmemory. The HiStar kernel provides gates, not IPC,
that block-based (rather than eXtent-based) allocation "0V|th the important distinction that upon Crossing a gate,
ext3 accounts for Linux’s slightly lower performance. 3 thread's resources initially come from its previous do-
The second phase tested random write throughputnain. By contrast, Asbestos changes a process’s label to
100MB worth of 8KB chunks were written to random track information flow when it receives IPCs, which is
locations in the existing file, and the modifications weredetectable by third parties and can leak information. As-
fsyned to disk for each 8KB write. In the case of bestos highly optimizes comparisons between enormous
pre-existing segments, HiStar allows modified segmentabels, which so far we have not done in HiStar.

Figure 13: Application-level benchmark results.

14

HiStar controls information flow with mandatory ac- etc., which avoids many issues HiStar needs to address.
cess controléMAC), a well-studied technique dating Singularity [9] provides programming-language-
back decades$|[1]. The ADEPT-50 dynamically adjustedbased security without an underlying operating system.
labels (essentially taint tracking) using the High-Water-Somewhat like containers, Singularity addresses coher-
Mark security model back in the late 1960s/[10]; the ideaent resource deallocation with a new abstraction called
has often resurfaced, for instance in IX][13] and LO- Software-Isolated Processes (SIPs). Singularity does not
MAC [ﬁ]. HiStar and its predecessor Asbestos are noveprovide MAC, however.
in that they make operations such as category alloca- SELinux [11] lets Linux support MAC; like most
tion and untainting available to application programmers MAC systems, policy is centrally specified by the admin-
where previous OSes reserved this functionality for se4strator. In contrast, HiStar lets applications craft pis
curity administrators. Decentralized untainting allows around their own categories of information. Retrofitting
novel uses of categories that we believe promote betteKAC to a large existing kernel such as Linux is poten-
application structure and support applications, such asially error-prone, particularly given the sometimes ill-
web services, not targeted by previous MAC systems. specified semantics of Linux system calls. HiStar’s disci-

Superficially, HiStar resembles capability-basedplined, small kernel can potentially achieve much higher
KeyKOS [2] and its successor ERASI[23]. Both systemsassurance at the cost of compatibility.
use a small number of kernel object types and a single-
level store. HiStar's container abstraction is reminiscen9 LIMITATIONS

of hierarchical space banks in KeyKOS. However, WhlIeWe believe HiStar provides a good environment to de-

KeyKOS uses kernel-level capabilities to enforce labels L . .
velop secure applications with small trusted code size.

at user-level, HiStar bases all protection on kernel'leve‘\lonetheless the system has limitations both in terms of

labels. The difference is significant because label : : . o
) . . o . unctionality and security. Some of these limitations are
specify security properties while imposing less structure_
S artifacts of the implementation that we hope to correct,
on applications—for example, an untrusted thread can | .
while others are more fundamental to the approach.

dynamically alter its label to observe secret data, which o . R .
has no analogue in a capability system. Users famlll_ar ywth Unix will find that, though HiStar
HiStar h A ber of . resembles Unix, it also lacks several useful features and
! rt1ar als no juperqser. E?ll?am ero pr?Y'gﬁlsgs'changes the semantics of some operations. For example,
tems have limited, partitione], or virualiz](giStardoes not currently keep file access times; although

Superuser privileges. Several o.p_ejrating systems inc“_‘ ossible to implement for some cases, correctly tracking
Ing Linux support P.QSIX cap§b|llt|_es, Wh'Ch can permit ime of last access is in many situations fundamentally at
some superuser privileges while disabling others. odds with information flow control

Plan 9E|7] also has no superuser. Administrative tasks another difference is thathmod chown andchgrp
such as adding users can only be performed on the filgayoke all open file descriptors and copy the file or di-
server console, virtually eliminating the threat of net- rectory. Because each file has one read and one write
work break-ins_. On yv_orkstations, however, the 00”50|ecategory, group permissions require a file’s owner to be
user has special privileges, and on compute Servers @ the group. There is no file execute permission without
pseudo-user named “bootes” does. Plan 9 provides gad permission, and no setuid bit (though gates arguably
complete, working system with a trusted computing basgyrgvide a better alternative to both). Several other facil-
many times smaller than comparable operating systeMsies are missing, though we hope to add them, includ-
It also pr_ovides per-process file namespaces, which ini‘ng support for system-wide backup and restore, and a
spired HiStar's user-level mount table segments. HOwyser-level trampoline mechanism to allow upgrading of
ever, Plan 9 was never intended to support MAC. software behind gates (since gate entries are fixed).

HiStar uses gates for protected control transfer, anidea Though HiStar is intended to allow administration
dating back to Multics/[21]. However, HiStar's protec- without a superuser, we do not yet have experience ad-
tion domains are not hierarchical like Multics rings. Hi- ministering a production HiStar system. However, we
Star gates are more like doors in Sprihl [8]. believe that to the extent it is needed, superuser privilege

Decentralized untainting, while new in operating sys-should be implemented yonventior—explicitly grant-
tems, was previously provided by programming lan-ing most privilege to the root user—not bigsign A Hi-
guages, notably Jif_[14]. There are significant differ- Star administrator can still revoke all resources by virtue
ences between a language and an operating system. 3if having write permission on the root container. This
can track information flow at the level of individual vari- provides a worst-case answer to uncooperative users that
ables and perform most label checks at compile time. Irefuse to grant the necessary privilege to root.
also has the luxury of relying on the underlying operat- While the HiStar kernel provides consistency across
ing system for storage, trusted input files, administrationkernel crashes and restarts, a crashed or killed process

15

can leave locked mutexes, such as the directory segmeptoject. This work was funded by joint DARPA/NSF Cy-
mutex. We currently do not recover from such problems,bertrust grant CNS-0430425.

but foresee two potential solutions. The first is to do
write-ahead logging in memory; given some way of de-
tecting a dead or crashed process—for example, througﬁl]
timeouts—other processes can recover the directory seg-
ment. The second is to prevent the thread from being!?!
killed while it is holding the directory mutex, by adding

a hard-link to it in the directory container. If the thread is
unreferenced from other containers, it will continue exe- ©!
cuting until removing itself from the directory container. (4]

Because Asbestos labels are more general than capas)
bilities, they allow multiple objects to be protected by
the same category and multiple categories to place re-
strictions on the same object. Users familiar with capa- [g]
bility systems will rightfully object that protecting mudt
ple objects with the same category limits the granularity [/
at which privileges can be enumerated. HiStar can be
used like a capability system by allocating a new cate- [g]
gory pair for every object, but our Unix library does not
do this. However, as the VPN example showed, HiStar 0
has the advantage of allowing new policies to be overlaid
on existing software, which cannot be done as easily irho]
pure capability systems.

One security limitation is that HiStar does not sup-[11]
port CPU quotas, though we hope to add these using the
container hierarchy. A more serious problem we do not;,,
know how to solve is covert timing channels. Many net- 13
work services have to offer low response latency, and as a
result, it becomes increasingly practical to leak informa-14
tion to outside observers by modulating response time. [15]

10 SUMMARY
[16]

HiStar is a new operating system that provides strict in-[17]
formation flow control without superuser privilege. Nar-
row interfaces allow for a small trusted kernel of less 18
than 16,000 lines, on which a Unix-like environment is
implemented mostly as untrusted user-level library codel(19]
A new container abstraction lets administrators manage
and revoke resources for processes they cannot observgg
Side-by-side with the Unix environment, the system sup-
ports a number of high-security, privilege-separated ap{?1!
plications previously not possible in a traditional Unix
system. Benchmarks show HiStar performs competi{22]
tively with Linux and OpenBSD.

(23]
ACKNOWLEDGMENTS

We thank Hector Garcia-Molina, Michael Freedman,[24]

Ramesh Chandra, Constantine Sapuntzakis, Jim Chow,
the anonymous reviewers, and our shepherd, Rob Pikd?®]
for their feedback. We also thank the Asbestos group, es-
pecially Steve VanDeBogart and Petros Efstathopoulos,
who co-designed Asbestos labels. HiStar was in part in-
spired by some of the input Cliff Frey had to the Asbestos

16

] H. Potzl.

REFERENCES

D. E. Bell and L. La Padula. Secure computer system: Uthiéieposition
and multics interpretation. Technical Report MTR-2997y.Re MITRE
Corp., Bedford, MA, March 1976.

A. C. Bomberger, A. P. Frantz, W. S. Frantz, A. C. Hardy,Hwardy, C. R.
Landau, and J. S. Shapiro. The KeyKOS nanokernel archigectnProc.
of the USENIX Workshop on Micro-Kernels and Other Kerneh#ec-
tures pages 95-112, April 1992.

ClamAV. http://www.clamav.net/.

D. E. Denning. A lattice model of secure information flo@ommunica-
tions of the ACM19(5):236—243, May 1976.

P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, Degler,

E. Kohler, D. Mazieres, F. Kaashoek, and R. Morris. Labeld avent
processes in the Asbestos operating systemPrbt. of the 20th SOSP
pages 17-30, October 2005.

H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes famadlocks: Fast
userlevel locking in Linux. Ottawa Linux Symposium, 2002.

T. Fraser. LOMAC: Low water-mark integrity protectionrf COTS envi-
ronments. InProc. of the 2000 IEEE Symposium on Security and Privacy
pages 230-245, Oakland, CA, May 2000.

G. Hamilton and P. Kougiouris. The Spring nucleus: A ralarnel for
objects. InProc. of the Summer 1993 USENpages 147-159, April 1993.

] G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken, P. Barham, M.hirdrich,

C. Hawblitzel, O. Hodson, S. Levi, N. Murphy, B. Steensga@rdTarditi,
T. Wobber, and B. Zill. An overview of the Singularity projecTechnical
Report MSR-TR-2005-135, Microsoft, Redmond, WA, Octohgd%2

C. E. Landwehr. Formal models for computer secu@gmputing Survels
13(3):247-278, September 1981.
P. Loscocco and S. Smalley. Integrating flexible supfmrsecurity poli-

cies into the Linux operating system. Rroc. of the 2001 USENpages
29-40, June 2001. FREENIX track.

LWIP. http://savannah.nongnu.org/projects/lwip/.

M. D. Mcllroy and J. A. Reeds. Multilevel security in théNIX tradition.
Software—Practice and Experien@2(8):673-694, 1992.

A. C. Myers and B. Liskov. Protecting privacy using thecentralized label
model. Transactions on Computer Syste®@!):410-442, October 2000.

R. Naraine. Symantec antivirus worm hole puts milliors
risk. eWeek.comMay 2006. http://www.eweek.com/article2/
0,1895,1967941,00.asp.

OpenVPN.http://openvpn.net/.

R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Theamp H. Trickey,
and P. Winterbottom. Plan 9 from Bell Lab€omputing System8(3):
221-254, Summer 1995.

Linux-VServer Technology 2004.
linux-vserver.org/Linux-VServer-Paper.

http://

K. Poulsen. Slammer worm crashed Ohio nuke plant rnighe Regis-
ter, August 20, 2003attp: //www.theregister.co.uk/2003/08/20/
slammer_worm_crashed_ohio_nuke/.

M. Rosenblum and J. Ousterhout. The design and impléatien of a log-
structured file system. IRroc. of the 13th SOSPages 1-15, Oct. 1991.
M. D. Schroeder and J. H. Saltzer. A hardware architector implement-
ing protection rings. IfProc. of the Third Symposium on Operating Systems
Principles pages 42-54, March 1972.

SeagateBarracuda 7200.7 Product ManudPublication 100217279, Rev.
L edition, March 2004. http://www.seagate.com/support/disc/
manuals/ata/cuda7200pm.pdf.

J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a tgstlaility system.
In Proc. of the 17th SOSPages 170-185, December 1999.

A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimatnd G. Peck.
Scalability in the XFS file system. IRroceedings of the USENIX 1996
Technical Conferenggages 1-14, San Diego, CA, USA, 22—-26 1996.

uClibc. http://uclibc.org/.

	Introduction
	Labels
	Example
	Notation

	Kernel design
	Threads
	Containers
	Quotas
	Address spaces
	Gates

	Kernel Implementation
	Code size

	User-level Design
	File System
	Processes
	File Descriptors
	Users
	Gate Calls
	Signals
	Networking
	Explicit Information Leaks

	Applications
	Anti-Virus Software
	User Authentication
	VPN Isolation
	Web Services

	Performance
	Microbenchmarks
	Application Performance

	Related work
	Limitations
	Summary

