
Improving Application Security with Data Flow Assertions

Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek
Massachusetts Institute of Technology – Computer Science and Artificial Intelligence Laboratory

ABSTRACT
RESIN is a new language runtime that helps prevent security vulner-
abilities, by allowing programmers to specify application-level data
flow assertions. RESIN provides policy objects, which programmers
use to specify assertion code and metadata; data tracking, which
allows programmers to associate assertions with application data,
and to keep track of assertions as the data flow through the appli-
cation; and filter objects, which programmers use to define data
flow boundaries at which assertions are checked. RESIN’s runtime
checks data flow assertions by propagating policy objects along with
data, as that data moves through the application, and then invoking
filter objects when data crosses a data flow boundary, such as when
writing data to the network or a file.

Using RESIN, Web application programmers can prevent a range
of problems, from SQL injection and cross-site scripting, to inadver-
tent password disclosure and missing access control checks. Adding
a RESIN assertion to an application requires few changes to the
existing application code, and an assertion can reuse existing code
and data structures. For instance, 23 lines of code detect and prevent
three previously-unknown missing access control vulnerabilities in
phpBB, a popular Web forum application. Other assertions compris-
ing tens of lines of code prevent a range of vulnerabilities in Python
and PHP applications. A prototype of RESIN incurs a 33% CPU
overhead running the HotCRP conference management application.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software Verification—Assertion
checkers; D.4.6 [Operating Systems]: Security and Protection

General Terms
Security, Languages, Design

1. INTRODUCTION
Software developers often have a plan for correct data flow within

their applications. For example, a user u’s password may flow out
of a Web site only via an email to user u’s email address. As another
example, user inputs must always flow through a sanitizing function
before flowing into a SQL query or HTML, to avoid SQL injection
or cross-site scripting vulnerabilities. Unfortunately, today these
plans are implemented implicitly: programmers try to insert code
in all the appropriate places to ensure correct flow, but it is easy to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’09, October 11–14, 2009, Big Sky, Montana, USA.
Copyright 2009 ACM 978-1-60558-752-3/09/10 ...$10.00.

miss some, which can lead to exploits. For example, one popular
Web application, phpMyAdmin [38], requires sanitizing user input
in 1,409 places. Not surprisingly, phpMyAdmin has suffered 60
vulnerabilities because some of these calls were forgotten [41].

This paper presents RESIN, a system that allows programmers
to make their plan for correct data flow explicit using data flow
assertions. Programmers can write a data flow assertion in one
place to capture the application’s high-level data flow invariant, and
RESIN checks the assertion in all relevant places, even places where
the programmer might have otherwise forgotten to check.

RESIN operates within a language runtime, such as the Python or
PHP interpreter. RESIN tracks application data as it flows through
the application, and checks data flow assertions on every executed
path. RESIN uses runtime mechanisms because they can capture
dynamic properties, like user-defined access control lists, while
integration with the language allows programmers to reuse the ap-
plication’s existing code in an assertion. RESIN is designed to help
programmers gain confidence in the correctness of their application,
and is not designed to handle malicious code.

A key challenge facing RESIN is knowing when to verify a data
flow assertion. Consider the assertion that a user’s password can
flow only to the user herself. There are many different ways that
an adversary might violate this assertion, and extract someone’s
password from the system. The adversary might trick the application
into emailing the password; the adversary might use a SQL injection
attack to query the passwords from the database; or the adversary
might fetch the password file from the server using a directory
traversal attack. RESIN needs to cover every one of these paths to
prevent password disclosure.

A second challenge is to design a generic mechanism that makes
it easy to express data flow assertions, including common assertions
like cross-site scripting avoidance, as well as application-specific
assertions. For example, HotCRP [26], a conference management
application, has its own data flow rules relating to password disclo-
sure and reviewer conflicts of interest, among others. Can a single
assertion API allow for succinct assertions for cross-site scripting
avoidance as well as HotCRP’s unique data flow rules?

The final challenge is to make data flow assertions coexist with
each other and with the application code. A single application may
have many different data flow assertions, and it must be easy to
add an additional assertion if a new data flow rule arises, without
having to change existing assertions. Moreover, applications are
often written by many different programmers. One programmer
may work on one part of the application and lack understanding
of the application’s overall data flow plan. RESIN should be able
to enforce data flow assertions without all the programmers being
aware of the assertions.

RESIN addresses these challenges using three ideas: policy ob-
jects, data tracking, and filter objects. Programmers explicitly an-
notate data, such as strings, with policy objects, which encapsulate
the assertion functionality that is specific to that data. Program-
mers write policy objects in the same language that the rest of the
application is written in, and can reuse existing code and data struc-

1

Vulnerability Count Percentage
SQL injection 1176 20.4%

Cross-site scripting 805 14.0%
Denial of service 661 11.5%
Buffer overflow 550 9.5%

Directory traversal 379 6.6%
Server-side script injection 287 5.0%

Missing access checks 263 4.6%
Other vulnerabilities 1647 28.6%

Total 5768 100%

Table 1: Top CVE security vulnerabilities of 2008 [41].

tures, which simplifies writing application-specific assertions. The
RESIN runtime then tracks these policy objects as the data propa-
gates through the application. When the data is about to leave the
control of RESIN, such as being sent over the network, RESIN in-
vokes filter objects to check the data flow assertions with assistance
from the data’s policy objects.

We evaluate RESIN in the context of application security by show-
ing how these three mechanisms can prevent a wide range of vul-
nerabilities in real Web applications, while requiring programmers
to write only tens of lines of code. One application, the MoinMoin
wiki [31], required only 8 lines of code to catch the same access
control bugs that required 2,000 lines in Flume [28], although Flume
provides stronger guarantees. HotCRP can use RESIN to uphold
its data flow rules, by adding data flow assertions that control who
may read a paper’s reviews, and to whom HotCRP can email a pass-
word reminder. Data flow assertions also help prevent a range of
other previously-unknown vulnerabilities in Python and PHP Web
applications. A prototype RESIN runtime for PHP has acceptable
performance overhead, amounting to 33% for HotCRP.

The contributions of this work are the idea of an application-level
data flow assertion, and a technique for implementing data flow
assertions using filter objects, policy objects, and data tracking. Ex-
periments with several real applications further show that data flow
assertions are concise, effective at preventing many security vulner-
abilities, and incrementally deployable in existing applications.

The rest of the paper is organized as follows. The next section
discusses the specific goals and motivation for RESIN. Section 3
presents the design of the RESIN runtime, and Section 4 describes
our implementation. Section 5 illustrates how RESIN prevents a
range of security vulnerabilities. Sections 6 and 7 present our evalu-
ation of RESIN’s ease of use, effectiveness, and performance. We
discuss RESIN’s limitations and future work in Section 8. Section 9
covers related work, and Section 10 concludes.

2. GOALS AND EXAMPLES
RESIN’s main goal is to help programmers avoid security vul-

nerabilities by treating exploits as data flow violations, and then
using data flow assertions to detect these violations. This section
explains how faulty data flows cause vulnerabilities, and how data
flow assertions can prevent those vulnerabilities.

SQL Injection and Cross-Site Scripting
SQL injection and cross-site scripting vulnerabilities are common
and can affect almost any Web application. Together, they account
for over a third of all reported security vulnerabilities in 2008, as
seen in Table 1. These vulnerabilities result from user input data
flowing into a SQL query string or HTML without first flowing
through their respective sanitization functions. To avoid these vul-
nerabilities today, programmers insert calls to the correct sanitization
function on every single path on which user input can flow to SQL

Vulnerable sites
Vulnerability among those surveyed

Cross-site scripting 31.5%
Information leakage 23.3%

Predictable resource location 10.2%
SQL injection 7.9%

Insufficient access control 1.5%
HTTP response splitting 0.8%

Table 2: Top Web site vulnerabilities of 2007 [48].

or HTML. In practice this is difficult to accomplish because there
are many data flow paths to keep track of, and some of them are
non-intuitive. For example, in one cross-site scripting vulnerability,
phpBB queried a malicious whois server, and then incorporated the
response into HTML without first sanitizing the response. A survey
of Web applications [48] summarized in Table 2 illustrates how
common these bugs are with cross-site scripting affecting more than
31% of applications, and SQL injection affecting almost 8%.

If there were a tool that could enforce a data flow assertion on
an entire application, a programmer could write an assertion to
catch these bugs and prevent an adversary from exploiting them.
For example, an assertion to prevent SQL injection exploits would
verify that:

DATA FLOW ASSERTION 1. Any user input data must flow through
a sanitization function before it flows into a SQL query.

RESIN aims to be such a tool.

Directory Traversal
Directory traversal is another common vulnerability that accounts
for 6.6% of the vulnerabilities in Table 1. In a directory traversal
attack, a vulnerable application allows the user to enter a file name,
but neglects to limit the directories available to the user. To exploit
this vulnerability, an adversary typically inserts the “..” string as part
of the file name which allows the adversary to gain unauthorized
access to read, or write files in the server’s file system. These ex-
ploits can be viewed as faulty data flows. If the adversary reads a file
without the proper authorization, the file’s data is incorrectly flowing
to the adversary. If the adversary writes to a file without the proper
authorization, the adversary is causing an invalid flow into the file.
Data flow assertions can address directory traversal vulnerabilities
by enforcing data flow rules on the use of files. For example, a pro-
grammer could encode the following directory traversal assertion to
protect against invalid writes:

DATA FLOW ASSERTION 2. No data may flow into directory d
unless the authenticated user has write permission for d.

Server-Side Script Injection
Server-side script injection accounts for 5% of the vulnerabilities
reported in Table 1. To exploit these vulnerabilities, an adversary up-
loads code to the server and then fools the application into running
that code. For instance, many PHP applications load script code for
different visual themes at runtime, by having the user specify the
file name for their desired theme. An adversary can exploit this by
uploading a file with the desired code onto the server (many applica-
tions allow uploading images or attachments), and then supplying
the name of that file as the theme to load.

Even if the application is careful to not include user-supplied file
names, a more subtle problem can occur. If an adversary uploads a
file with a .php extension, the Web server may allow the adversary
to directly execute that file’s contents by simply issuing an HTTP

2

request for that file. Avoiding such problems requires coordination
between many parts of the application, and even the Web server,
to understand which file extensions are “dangerous”. This attack
can be viewed as a faulty data flow and could be addressed by the
following data flow assertion:

DATA FLOW ASSERTION 3. The interpreter may not interpret
any user-supplied code.

Access Control
Insufficient access control can also be viewed as a data flow viola-
tion. These vulnerabilities allow an adversary to read data without
proper authorization and make up 4.6% of the vulnerabilities re-
ported in 2008. For example, a missing access control check in
MoinMoin wiki allowed a user to read any wiki page, even if the
page’s access control list (ACL) did not permit the user to read that
page [46]. Like the previous vulnerabilities, this data leak can be
viewed as a data flow violation; the wiki page is flowing to a user
who lacks permission to receive the page. This vulnerability could
be addressed with the data flow assertion:

DATA FLOW ASSERTION 4. Wiki page p may flow out of the
system only to a user on p’s ACL.

Insufficient access control is particularly challenging to address
because access control rules are often unique to the application.
For example, MoinMoin’s ACL rules differ from HotCRP’s access
control rules, which ensure that only paper authors and program
committee (PC) members may read paper reviews, and that PC mem-
bers may not view a paper’s authors if the author list is anonymous.
Ideally, a data flow assertion could take advantage of the code and
data structures that an application already uses to implement its
access control checks.

Password Disclosure
Another example of a specific access control vulnerability is a pass-
word disclosure vulnerability that was discovered in HotCRP; we
use this bug as a running example for the rest of this paper. This bug
was a result of two separate features, as follows.

First, a HotCRP user can ask HotCRP to send a password re-
minder email to the user’s email address, in case the user forgets the
password. HotCRP makes sure to send the email only to the email
address of the account holder as stored in the server. The second
feature is an email preview mode, in which the site administrator
configures HotCRP to display email messages in the browser, rather
than send them via email. In this vulnerability, an adversary asks
HotCRP to send a password reminder for another HotCRP user (the
victim) while HotCRP is in email preview mode. HotCRP will dis-
play the content of the password reminder email in the adversary’s
browser, instead of sending the password to that victim’s email
address, thus revealing the victim’s password to the adversary.

A data flow assertion could have prevented this vulnerability
because the assertion would have caught the invalid password flow
despite the unexpected combination of the password reminder and
email preview mode. The assertion in this case would have been:

DATA FLOW ASSERTION 5. User u’s password may leave the
system only via email to u’s email address, or to the program chair.

2.1 Threat Model
As we have shown, many vulnerabilities in today’s applications

can be thought of as programming errors that allow faulty data
flows. Adversaries exploit these faulty data flows to bypass the
application’s security plan. RESIN aims to prevent adversaries
from exploiting these faulty data flows by allowing programmers to

explicitly specify data flow assertions, which are then checked at
runtime in all places in the application.

We expect that programmers would specify data flow assertions
to prevent well-known vulnerabilities shown in Table 1, as well
as existing application-specific rules, such as HotCRP’s rules for
password disclosure or reviewer conflicts of interest. As program-
mers write new code, they can use data flow assertions to make sure
their data is properly handled in code written by other developers,
without having to look at the entire code base. Finally, as new prob-
lems are discovered, either by attackers or by programmers auditing
the code, data flow assertions can be used to fix an entire class of
vulnerabilities, rather than just a specific instance of the bug.

RESIN treats the entire language runtime, and application code, as
part of the trusted computing base. RESIN assumes the application
code is not malicious, and does not prevent an adversary from com-
promising the underlying language runtime or the OS. In general,
a buffer overflow attack can compromise a language runtime, but
buffer overflows are less of an issue for RESIN because languages
like PHP and Python are not susceptible to buffer overflows.

3. DESIGN
Many of the vulnerabilities described in Section 2 can be ad-

dressed with data flow assertions, but the design of such an assertion
system requires solutions to a number of challenges. First, the sys-
tem must enforce assertions on the many communication channels
available to the application. Second, the system must provide a
convenient API in which programmers can express many different
types of data flow assertions. Finally, the system must handle several
assertions in a single application gracefully; it should be easy to add
new assertions, and doing so should not disrupt existing assertions.
This section describes how RESIN addresses these design challenges,
beginning with an example of how a data flow assertion prevents the
HotCRP password disclosure vulnerability described in Section 2.

3.1 Design Overview
To illustrate the high-level design of RESIN and what a program-

mer must do to implement a data flow assertion, this section de-
scribes how a programmer would implement Data Flow Assertion 5,
the HotCRP password assertion, in RESIN. This example does not
use all of RESIN’s features, but it does show RESIN’s main concepts.

Conceptually, the programmer needs to restrict the flow of pass-
words. However, passwords are handled by a number of modules
in HotCRP, including the authentication code and code that formats
and sends email messages. Thus, the programmer must confine
passwords by defining a data flow boundary that surrounds the en-
tire application. Then the programmer allows a password to exit
that boundary only if that password is flowing to the owner via
email, or to the program chair. Finally, the programmer marks
the passwords as sensitive so that the boundary can identify which
data contains password information, and writes a small amount of
assertion checking code.

RESIN provides three mechanisms that help the programmer
implement such an assertion (see Figure 1):

• Programmers use filter objects to define data flow boundaries.
A filter object interposes on an input/output channel or a
function call interface.

• Programmers explicitly annotate sensitive data with policy
objects. A policy object can contain code and metadata for
checking assertions.

• Programmers rely on RESIN’s runtime to perform data track-
ing to propagate policy objects along with sensitive data when
the application copies that data within the system.

3

Figure 1: Overview of the HotCRP password data flow assertion in RESIN.

class PasswordPolicy extends Policy {
private $email;
function __construct($email) {
$this->email = $email;

}
function export_check($context) {
if ($context[’type’] == ’email’ &&

$context[’email’] == $this->email) return;
global $Me;
if ($context[’type’] == ’http’ &&

$Me->privChair) return;
throw new Exception(’unauthorized disclosure’);

}
}

policy_add($password, new PasswordPolicy(’u@foo.com’));

Figure 2: Simplified PHP code for defining the HotCRP password
policy class and annotating the password data. This policy only
allows a password to be disclosed to the user’s own email address
or to the program chair.

RESIN by default defines a data flow boundary around the lan-
guage runtime using filter objects that cover all I/O channels, in-
cluding pipes and sockets. By default, RESIN also annotates some
of these default filter objects with context metadata that describes
the specific filter object. For example, RESIN annotates each filter
object connected to an outgoing email channel with the email’s
recipient address. The default set of filters and contexts defining the
boundary are appropriate for the HotCRP password assertion, so the
programmer need not define them manually.

In order for RESIN to track the passwords, the programmer must
annotate each password with a policy object, which is a language-
level object that contains fields and methods. In this assertion, a
user’s password will have a policy object that contains a copy of the
user’s email address so that the assertion can determine which email
address may receive the password data. When the user first sets their
password, the programmer copies the user’s email address from the
current session information into the password’s policy object.

The programmer also writes the code that checks the assertion, in
a method called export_check within the password policy object’s
class definition. Figure 2 shows the code the programmer must write
to implement this data flow assertion, including the policy object’s
class definition and the code that annotates a password with a policy
object. The policy object also shows how an assertion can benefit
from the application’s data structures; this assertion uses an existing
flag, $Me->privChair, to determine whether the current user is the
program chair.

Once a password has the appropriate policy object, RESIN’s data
tracking propagates that policy object along with the password data;
when the application copies or moves the data within the system,
the policy goes along with the password data. For example, after
HotCRP composes the email content using the password data, the
email content will also have the password policy annotation (as
shown in Figure 1).

RESIN enforces the assertion by making each filter object call
export_check on the policy object of any data that flows through
the filter. The filter object passes its context as an argument to
export_check to provide details about the specific I/O channel (e.g.,
the email’s recipient).

This assertion catches HotCRP’s faulty data flow before it can
leak a password. When HotCRP tries to send the password data
over an HTTP connection, the connection’s filter object invokes
the export_check method on the password’s policy object. The
export_check code observes that HotCRP is incorrectly trying to
send the password over an HTTP connection, and throws an ex-
ception which prevents HotCRP from sending the password to the
adversary. This solution works for all disclosure paths through the
code because RESIN’s default boundary controls all output chan-
nels; HotCRP cannot reveal the password without traversing a filter
object.

This example is just one way to implement the password data
flow assertion, and there may be other ways. For example, the
programmer could implement the assertion checking code in the
filter objects rather than the password’s policy object. However,
modifying filter objects is less attractive because the programmer
would need to modify every filter object that a password can traverse.
Putting the assertion code in the policy object allows the programmer
to write the assertion code in one place.

3.2 Filter Objects
A filter object, represented by a diamond in Figure 1, is a generic

interposition mechanism that application programmers use to create
data flow boundaries around their applications. An application can
associate a filter object with a function call interface, or an I/O
channel such as a file handle, socket, or pipe.

RESIN aims to support data flow assertions that are specific to an
application, so in RESIN, a programmer implements a filter object
as a language-level object in the same language as the rest of the
application. This allows the programmer to reuse the application’s
code and data structures, and allows for better integration with
applications.

When an application sends data across a channel guarded by a
filter object, RESIN invokes a method in that filter object with the

4

Function Caller Semantics
filter::filter_read(data, offset) Runtime Invoked when data comes in through a data flow boundary, and can assign initial

policies for data; e.g., by de-serializing from persistent storage.
filter::filter_write(data, offset) Runtime Invoked when data is exported through a data flow boundary; typically invokes

assertion checks or serializes policy objects to persistent storage.
filter::filter_func(args) Runtime Checks and/or proxies a function call.
policy::export_check(context) Filter object Checks if data flow assertion allows exporting data, and throws exception if not;

context provides information about the data flow boundary.
policy::merge(policy_object_set) Runtime Returns set of policies (typically zero or one) that should apply to merging of data

tagged with this policy and data tagged with policy_object_set.
policy_add(data, policy) Programmer Adds policy to data’s policy set.
policy_remove(data, policy) Programmer Removes policy from data’s policy set.
policy_get(data) Programmer Returns set of policies associated with data.

Table 3: The RESIN API. A::B(args) denotes method B of an object of type A. Not shown is the API used by the programmer to specify and
access filter objects for different data flow boundaries.

class DefaultFilter(Filter):
def __init__(self): self.context = {}
def filter_write(self, buf):
for p in policy_get(buf):

if hasattr(p, ’export_check’):
p.export_check(self.context)

return buf

Figure 3: Python code for the default filter for sockets.

data as an argument. If the interposition point is an I/O channel,
RESIN will invoke either filter_read or filter_write; for function
calls, RESIN will invoke filter_func (see Table 3). Filter_read and
filter_write can check or alter the in-transit data. Filter_func can
check or alter the function’s arguments and return value.

For example, in an HTTP splitting attack, the adversary inserts
an extra CR-LF-CR-LF delimiter into the HTTP output to confuse
browsers into thinking there are two HTTP responses. To thwart
this type of attack, the application programmer could write a filter
object that scans for unexpected CR-LF-CR-LF character sequences,
and then attach this filter to the HTTP output channel. As a second
example, a function that encrypts data is a natural data flow boundary.
A programmer may choose to attach a filter object to the encryption
function that removes policy objects for confidentiality assertions
such as the PasswordPolicy from Section 3.1.

3.2.1 Default Filter Objects
RESIN pre-defines default filter objects on all I/O channels into

and out of the runtime, including sockets, pipes, files, HTTP out-
put, email, SQL, and code import. Since these default filter objects
are at the edge of the runtime, data can flow freely within the ap-
plication and the default filters will only check assertions before
making program output visible to the outside world. This bound-
ary should be suitable for many assertions because it surrounds the
entire application. The default boundary also helps programmers
avoid accidentally overlooking an I/O channel, which would result
in an incomplete boundary that would not cover all possible flows.

The default filter objects check the in-transit data for policies, as
shown in Figure 3. If a filter finds a policy that has an export_check
method, the filter invokes the policy’s export_check method. As
described in Section 3.1, export_check typically checks the assertion
and throws an exception if the flow would violate the assertion.

Since the policy’s export_check method may need additional
information about the filter’s specific I/O channel or function call
to check the assertion, RESIN attaches context information, in the
form of a hash table, to some of the default filters as described

in Section 3.1. RESIN also allows the application to add its own
key-value pairs to the context hash table of default filter objects.

The context key-value pairs are likely specific to the I/O channel
or function call that the filter guards, and the default filter passes the
context hash table as an argument to export_check. In the HotCRP
example, the context for a sendmail pipe contains the recipient of
the email (as shown in Figure 1).

3.2.2 Importing Code
RESIN treats the interpreter’s execution of script code as another

data flow channel, with its own filter object. This allows program-
mers to interpose on all code flowing into the interpreter, and ensure
that such code came from an approved source. This can prevent
server-side script injection attacks, where an adversary tricks the
interpreter into executing adversary-provided script code.

3.2.3 Write Access Control
In addition to runtime boundaries, RESIN also permits an applica-

tion to place filter objects on persistent files to control write access,
because data tracking alone cannot prevent modifications. In partic-
ular, RESIN allows programmers to specify access control checks
for files and directories in a persistent filter object that’s stored in
the extended attributes of a specific file or directory. The runtime
automatically invokes this persistent filter object when data flows
into or out of that file, or modifies that directory (such as creating,
deleting, or renaming files). This programmer-specified filter object
can check whether the current user is authorized to access that file
or directory. These persistent filter objects associated with a specific
file or directory are separate from the filter objects associated by
default with every file’s I/O channel.

3.3 Policy Objects
Like a filter object, a policy object is a language-level object,

and can reuse the application’s existing code and data structures. A
policy object can contain fields and methods that work in concert
with filter objects; policy objects are represented by the rounded
rectangles in Figure 1.

To work with default filter objects, a policy object should have
an export_check method as shown in Table 3. As mentioned earlier,
default filter objects invoke export_check when data with a policy
passes through a filter, so export_check is where programmers imple-
ment an assertion check for use with default filters. If the assertion
fails, export_check should throw an exception so that RESIN can
prevent the faulty data flow.

5

The main distinction between policy objects and filter objects is
that a policy object is specific to data, and a filter object is specific
to a channel. A policy object would contain data specific metadata
and code; for example, the HotCRP password policy contains the
email address of the password’s account holder. A filter object
would contain channel specific metadata; for example, the email
filter object contains the recipient’s email address.

Even though RESIN allows programmers to write many different
filter and policy objects, the interface between all filters and policies
remains largely the same, if the application uses export_check. This
limits the complexity of adding or changing filters and policies,
because each policy object need not know about all possible filter
objects, and each filter object need not know about all possible
policy objects (although this does not preclude the programmer
from implementing special cases for certain policy-filter pairs).

3.4 Data Tracking
RESIN keeps track of policy objects associated with data. The

programmer attaches a policy object to a datum—a primitive data
element such as an integer or a character in a string (although it is
common to assign the same policy to all characters in a string). The
RESIN runtime then propagates that policy object along with the
data, as the application code moves or copies the data.

To attach a policy object to data, the programmer uses the pol-
icy_add function listed in Table 3. Since an application may have
multiple data flow assertions, a single datum may have multiple
policy objects, all contained in the datum’s policy set.

RESIN propagates policies in a fine grained manner. For example,
if an application concatenates the string “foo” (with policy p1), and
“bar” (with policy p2), then in the resulting string “foobar”, the first
three characters will have only policy p1 and the last three characters
will have only p2. If the programmer then takes the first three
characters of the combined string, the resulting substring “foo” will
only have policy p1. Tracking data at the character level minimizes
interference between different data flow assertions, whose data may
be combined in the same string, and minimizes unintended policy
propagation, when marshalling and un-marshalling data structures.
For example, in the HotCRP password reminder email message, only
the characters comprising the user’s password have the password
policy object. The rest of the string is not associated with the
password policy object, and can potentially be manipulated and
sent over the network without worrying about the password policy
(assuming there are no other policies).

RESIN tracks explicit data flows such as variable assignment;
most of the bugs we encountered, including all the bugs described in
Sections 2 and 6, use explicit data flows. However, some data flows
are implicit. One example is a control flow channel, such as when a
value that has a policy object influences a conditional branch, which
then changes the program’s output. Another example of an implicit
flow is through data structure layout; an application can store data
in an array using a particular order. RESIN does not track this order
information, and a programmer cannot attach a policy object to the
array’s order. These implicit data flows are sometimes surprising
and difficult to understand, and RESIN does not track them. If the
programmer wants to specify data flow assertions about such data,
the programmer must first make this data explicit, and only then
attach a policy to it.

3.4.1 Persistent Policies
RESIN only tracks data flow inside the language runtime, and

checks assertions at the runtime boundary, because it cannot control
what happens to the data after it leaves the runtime. However, many
applications store data persistently in file systems and databases.

Figure 4: Saving persistent policies to a SQL database for HotCRP
passwords. Uses symbols from Figure 1.

For example, HotCRP stores user passwords in a SQL database. It
can be inconvenient and error-prone for the programmer to manually
save metadata about the password’s policy object when saving it to
the database, and then reconstruct the policy object when reading
the password later.

To help programmers of such applications, RESIN transparently
tracks data flows to and from persistent storage. RESIN’s default
filter objects serialize policy objects to persistent files and database
storage when data is written out, and de-serializes the policy objects
when data is read back into the runtime.

For data going to a file, the file’s default filter object serializes the
data’s policy objects into the file’s extended attributes. Whenever
the application reads data from the file, the filter reads the serialized
policy from the file’s extended attributes, and associates it with the
newly-read data. RESIN tracks policies for file data at byte-level
granularity, as it does for strings.

RESIN also serializes policies for data stored in a SQL database,
as shown in Figure 4. RESIN accomplishes this by attaching a default
filter object to the function used to issue SQL queries, and using that
filter to rewrite queries and results. For a CREATE TABLE query, the
filter adds an additional policy column to store the serialized policy
for each data column. For a query that writes to the database, the
filter augments the query to store the serialized policy of each cell’s
value into the corresponding policy column. Last, for a query that
fetches data, the filter augments the query to fetch the corresponding
policy column, and associates each de-serialized policy object with
the corresponding data cell in the resulting set of rows.

Storing policies persistently also helps other programs, such as
the Web server, to check invariants on file data. For example, if an
application accidentally stores passwords in a world-readable file,
and an adversary tries to fetch that file via HTTP, a RESIN-aware
Web server will invoke the file’s policy objects before transmitting
the file, fail the export_check, and prevent password disclosure.

RESIN only serializes the class name and data fields of a policy
object. This allows programmers to change the code for a policy
class to evolve its behavior over time. For example, a program-
mer could change the export_check method of HotCRP’s password
policy object to disallow disclosure to the program chair without
changing the existing persistent policy objects. However, if the
application needs to change the fields of a persistent policy, the
programmer will need to update the persistent policies, much like
database schema migration.

3.4.2 Merging Policies
RESIN uses character-level tracking to avoid having to merge

policies when individual data elements are propagated verbatim,
such as through concatenation or taking a substring. Unfortunately,
merging is inevitable in some cases, such as when string characters
with different policies are converted to integer values and added up
to compute a checksum. In many situations, such low-level data
transformation corresponds to a boundary, such as encryption or

6

hashing, and would be a good fit for an application-specific filter
object. However, relying on the programmer to insert filter objects
in all such places would be error-prone, and RESIN provides a safety
net by merging policy objects in the absence of any explicit actions
by the programmer.

By default, RESIN takes the union of policy objects of source
operands, and attaches them to the resulting datum. The union
strategy is suitable for some data flow assertions. For example, an
assertion that tracks user-supplied inputs by marking them with a
UserData policy would like to label the result as UserData if any
source operand was labeled as such. In contrast, the intersection
strategy may be applicable to other policies. An assertion that tracks
data authenticity by marking data with an AuthenticData policy
would like to label the result as AuthenticData only if all source
operands were labeled that way.

Because different policies may have different notions of a safe
merge strategy, RESIN allows a policy object to override the merge
method shown in Table 3. When application code merges two data
elements, RESIN invokes the merge method on each policy of each
source operand, passing in the entire policy set of the other operand
as the argument. The merge method returns a set of policy objects
that it wants associated with the new datum, or throws an exception
if this policy should not be merged. The merge method can consult
the set of policies associated with the other operand to implement
either the union or intersection strategies. The RESIN runtime then
labels the resulting datum with the union of all policies returned by
all merge methods.

4. IMPLEMENTATION
We have implemented two RESIN prototypes, one in the PHP

runtime, and the other in Python. At a high-level, RESIN requires
the addition of a pointer, that points to a set of policy objects, to
the runtime’s internal representation of a datum. For example, in
PHP, the additional pointer resides in the zval object for strings and
numbers. For strings, each policy object contains a character range
for which the policy applies. When copying or moving data from one
primitive object to another, the language runtime copies the policy
set from the source to the destination, and modifies the character
ranges if necessary. When merging individual data elements, the
runtime invokes the policies’ merge functions.

The PHP prototype involved 5,944 lines of code. The largest
module is the SQL parsing and translation mechanism at about 2,600
lines. The core data structures and related functions make up about
1,100 lines. Most of the remaining 2,200 lines are spent propagating
and merging policy objects. Adding propagation to the core PHP
language required changes to its virtual machine opcode handlers,
such as variable assignment, addition, and string concatenation. In
addition, PHP implements many of its library functions, such as
substr and printf, in C, which are outside of PHP’s virtual machine
and require additional propagation code.

To allow the Web server to check persistent policies for file data,
as described in Section 3.4.1, we modified the mod_php Apache
module to de-serialize and invoke policy objects for all static files it
serves. Doing so required modifying 49 lines of code in mod_php.

The Python prototype only involved 681 lines of code; this is
fewer than the PHP prototype for two reasons. First, our Python pro-
totype does not implement all the RESIN features; it lacks character-
level data tracking, persistent policy storage in SQL databases, and
Apache static file support. Second, Python uses fewer C libraries,
so it required little propagation code beyond the opcode handlers.

5. APPLYING RESIN

def process_client(client_sock):
req = parse_request(client_sock)
client_sock.__filter.context[’user’] = req.user
... process req ...

class PagePolicy(Policy):
def __init__(self, acl): self.acl = acl
def export_check(self, context):
if not self.acl.may(context[’user’], ’read’):
raise Exception("insufficient access")

class Page:
def update_body(self, text):
text = policy_add(text, PagePolicy(self.getACL()))
... write text to page’s file ...

Figure 5: Python code for a data flow assertion that checks read
access control in MoinMoin. The process_client and update_body
functions are simplified versions of MoinMoin equivalents.

RESIN’s main goal is to allow programmers to avoid security vul-
nerabilities by specifying data flow assertions. Section 3.1 already
showed how a programmer can implement a data flow assertion that
prevents password disclosure in HotCRP. This section shows how a
programmer would implement data flow assertions in RESIN for a
number of other vulnerabilities and applications.

The following examples use the syntax described in Table 3. Addi-
tionally, these examples use sock.__filter to access a socket’s
filter object, and in the Python code, policy_add and policy_remove
return a new string with the same contents but a different policy set,
because Python strings are immutable.

5.1 Access Control Checks
As mentioned in Section 2, RESIN aims to address missing access

control checks. To illustrate how a programmer would use RESIN
to verify access control checks, this section provides an example
implementation of Data Flow Assertion 4, the assertion that verifies
MoinMoin wiki’s read ACL scheme (see Section 2).

The MoinMoin ACL assertion prevents a wiki page from flowing
to a user that’s not on the page’s ACL. One way for a programmer
to implement this assertion in RESIN is to:

1. annotate HTTP output channels with context that identifies
the user on the other end of the channel;

2. define a PagePolicy object that contains an ACL;

3. implement an export_check method in PagePolicy that matches
the output channel against the PagePolicy’s ACL;

4. attach a PagePolicy to the data in each wiki page.

Figure 5 shows all the code necessary for this implementation. The
process_client function annotates each HTTP connection’s context
with the current user, after parsing the user’s request and creden-
tials. PagePolicy contains a copy of the ACL, and implements
export_check. The update_body method creates a PagePolicy object
and attaches it to the page’s data before saving the page to the file
system. One reason why the PagePolicy is short is that it reuses
existing application code to perform the access control check.

This example assertion illustrates the use of persistent policies.
The update_body function associates a PagePolicy with the contents
of a page immediately before writing the page to a file. As the page
data flows to the file, the default filter object serializes the PagePolicy
object, including the access control list, to the file system. When
MoinMoin reads this file later, the default filter will de-serialize
the PagePolicy and attach it to the page data in the runtime, so that
RESIN will automatically enforce the same access control policy.

7

class CodeApproval extends Policy {
function export_check($context) {}

}

function make_file_executable($f) {
$code = file_get_contents($f);
policy_add($code, new CodeApproval());
file_put_contents($f, $code);

}

class InterpreterFilter extends Filter {
function filter_read($buf) {
foreach (policy_get($buf) as $p)

if ($p instanceof CodeApproval)
return $buf;

throw new Exception(’not executable’);
}

}

Figure 6: Simplified PHP code for a data flow assertion that catches
server-side script injection. In the actual implementation, filter_read
verifies that each character in $buf has the CodeApproval policy.

In this implementation, the update_body function provides a
single place where MoinMoin saves the page to the file system,
and a thus a single place to attach the PagePolicy. If, however,
MoinMoin had multiple code paths that stored pages in the file
system, the programmer could assign the policy to the page contents
earlier, perhaps directly to the CGI input variables.

In addition to read access checks, the programmer can also define
a data flow assertion that verifies write access checks. MoinMoin’s
write ACLs imply the assertion: data may flow into wiki page p only
if the user is on p’s write ACL. MoinMoin stores a wiki page as a
directory that contains each version of the page as a separate file.
The programmer can implement this assertion by creating a filter
class that verifies the write ACL against the current user, and then
attaching filter instances to the files and directory that represent a
wiki page. The filters restrict the modification of existing versions,
and also the creation of new versions based on the page’s ACL.

5.2 Server-Side Script Injection
Another class of vulnerabilities that RESIN aims to address is

server-side script injection, as described in Section 2, which can be
addressed with Data Flow Assertion 3. One way for the programmer
to implement this assertion is to:

1. define an empty CodeApproval policy object;1

2. annotate application code and libraries with CodeApproval
policy objects;

3. change the interpreter’s default input filter (see Section 3.2.2)
to require a CodeApproval policy on all imported code.

This data flow assertion instructs RESIN to limit what code the in-
terpreter may use. Figure 6 lists the code for implementing this
assertion. When installing an application, the developer tags the ap-
plication code and system libraries with a persistent CodeApproval
policy object using make_file_executable. The filter_read method
only allows code with a CodeApproval policy object to pass, ensur-
ing that code from an adversary which would lack the CodeApproval
policy, will not be executed, whether through include statements,
eval, or direct HTTP requests.

The programmer must override the interpreter’s filter in a global
configuration file, to ensure the filter is set before any other code

1The CodeApproval policy does not need to take the intersection of
policies during merge because RESIN’s character-level data tracking
avoids having to merge file data.

executes; PHP’s auto_prepend_file option is one way to do this.
If, instead, the application set the filter at the beginning of the
application’s own code, adversaries could bypass the check if they
are able to upload and run their own .php files.

This example illustrates the need for programmer-specified fil-
ter objects in addition to programmer-specified context for default
filters. The default filter calls export_check on all the policies that
pass through, but the default filter always permits data that has no
policy. The filter in this script injection assertion requires that data
have a CodeApproval policy, and reject data that does not.

5.3 SQL Injection and Cross-Site Scripting
As mentioned in Section 2, the two most popular attack vectors

in Web applications today are SQL injection and cross-site scripting.
This section presents two different strategies for using RESIN to
address these vulnerabilities.

To implement the first strategy, the programmer:

1. defines two policy object classes: UntrustedData and SQL-
Sanitized;

2. annotates untrusted input data with an UntrustedData policy;

3. changes the existing SQL sanitization function to attach a
SQLSanitized object to the freshly sanitized data;

4. changes the SQL filter object to check the policy objects on
each SQL query. If the query contains any characters that have
the UntrustedData policy, but not the SQLSanitized policy,
the filter will throw an exception and refuse to forward the
query to the database.

Addressing cross-site scripting is similar, except that it uses HTML-
Sanitized rather than SQLSanitized. This strategy catches unsani-
tized data because the data will lack the correct SQLSanitized or
HTMLSanitized policy object. The reason for appending SQLSani-
tized and HTMLSanitized instead of removing UntrustedData is to
allow the assertion to distinguish between data that may be incorpo-
rated into SQL versus HTML since they use different sanitization
functions. This strategy ensures that the programmer uses the cor-
rect sanitizer (e.g., the programmer did not accidentally use SQL
quoting for a string used as part of an HTML document).

The second strategy for preventing SQL injection and cross-site
scripting vulnerabilities is to use the same UntrustedData policy
from the previous strategy, but rather than appending a policy like
SQLSanitized, the SQL filter inspects the final query and throws an
exception if any characters in the query’s structure (keywords, white
space, and identifiers) have the UntrustedData policy. The HTML
filter performs a similar check for UntrustedData on JavaScript
portions of the HTML to catch cross-site scripting errors, similar to
a technique used in prior work [34].

A variation on the second strategy is to change the SQL filter’s
tokenizer to keep contiguous bytes with the UntrustedData policy
in the same token, and to automatically sanitize the untrusted data
in transit to the SQL database. This will prevent untrusted data from
affecting the command structure of the query, and likewise for the
HTML tokenizer. These two variations require the addition of either
tokenizing or parsing to the filter objects, but they avoid relying on
trusted quoting functions.

We have experimented with both of these strategies in RESIN,
and find that while the second approach requires more code for the
parsers, many applications can reuse the same parsing code.

A SQL injection assertion is complementary to the other asser-
tions we describe in this section. For instance, even if an application
has a SQL injection vulnerability, and an adversary manages to ex-
ecute the query SELECT user, password FROM userdb,

8

the policy object for each password will still be de-serialized from
the database, and will prevent password disclosure.

5.4 Other Attack Vectors
Finally, there are a number of other attack vectors that RESIN can

help defend against. For instance, to address the HTTP response
splitting attack described in Section 3.2, a developer can use a filter
to reject any CR-LF-CR-LF sequences in the HTTP header that
came from user input.

As Web applications use more client-side code, they also use
more JSON to transport data from the server to the client. Here,
much like in SQL injection, an adversary may be able to craft an
input string that changes the structure of the JSON’s JavaScript
data structure, or worse yet, include client-side code as part of the
data structure. Web applications can use RESIN’s data tracking
mechanisms to avoid these pitfalls as they would for SQL injection.

5.5 Application Integration
One potential concern when using RESIN is that a data flow

assertion can duplicate data flow checks and security checks that
already exist in an application. As a concrete example, consider
HotCRP, which maintains a list of authors for each paper. If a paper
submission is anonymous, HotCRP must not reveal the submission’s
list of authors to the PC members. HotCRP already performs this
check before adding the author list to the HTML output. Adding
a RESIN data flow assertion to verify read access to the author list
will make HotCRP perform the access check a second time within
the data flow assertion, duplicating the check that already exists.

If a programmer implements an application with RESIN in mind,
the programmer can use an exception to indicate that the user may
not read certain data, thereby avoiding duplicate access checks. For
example, we modified the HotCRP code that displays a paper sub-
mission to always try to display the submission’s author list. If the
submission is anonymous, the data flow assertion raises an excep-
tion; the display code catches that exception, and then displays the
string “Anonymous” instead of the author list. This avoids dupli-
cate checks because the page generation code does not explicitly
perform the access control check. However, if the application sends
HTML output to the browser during a try block and then encounters
an exception later in the try block, the previously released HTML
might be invalid because the try block did not run to completion.

RESIN provides an output buffering mechanism to assist with this
style of code. To use output buffering, the application starts a new
try block before running HTML generation code that might throw
an exception. At the start of the try block, the application notifies
the outgoing HTML filter object to start buffering output. If the try
block throws an exception, the corresponding catch block notifies
the HTML filter to discard the output buffer, and potentially send
alternate output in its place (such as “Anonymous” in the example).
However, if the try block runs to completion, the try block notifies
the HTML filter to release the data in the output buffer.

Using exceptions, instead of explicit access checks, frees the
programmer from needing to know exactly which checks to invoke
in every single case, because RESIN invokes the checks. Instead,
programmers need to only wrap code that might fail a check with
an appropriate exception handler, and specify how to present an
exception to the user.

6. SECURITY EVALUATION
The main criteria for evaluating RESIN is whether it is effective at

helping a programmer prevent data flow vulnerabilities. To provide
a quantitative measure of RESIN’s effectiveness, we focus on three
areas. First, we determine how much work a programmer must do

to implement an existing implicit data flow plan as an explicit data
flow assertion in RESIN. We then evaluate whether each data flow
assertion actually prevents typical data flow bugs, both previously-
known and previously-unknown bugs. Finally, we evaluate whether
a single high-level assertion can be general enough to cover both
common and uncommon data flows that might violate the assertion,
by testing assertions against bugs that use surprising data paths.

6.1 Programmer Effort
To determine the level of effort required for a programmer to use

RESIN, we took a number of existing, off-the-shelf applications and
examined some of their implicit security-related data flow plans.
We then implemented a RESIN data flow assertion for each of those
implicit plans. Table 4 summarizes the results, showing the applica-
tions, the number of lines of code in the application, and the number
of lines of code in each data flow assertion.

The results in Table 4 show that each data flow assertion requires
a small amount of code, on the order of tens of lines of code. The
assertion that checks read access to author lists in HotCRP requires
the most changes, 32 lines. This is more code than other assertions
because our implementation issues database queries and interprets
the results to perform the access check, requiring extra code. How-
ever, many of the other assertions in Table 4 reuse existing code
from the application’s existing security plan, and are shorter.

Table 4 also shows that the effort required to implement a data
flow assertion does not grow with the size of the application. This
is because implementing an assertion only requires changes where
sensitive data first enters the application, and/or where data exits
the system, not on every path data takes through the application;
RESIN’s data tracking handles those data paths. For example, the
cross-site scripting assertion for phpBB is only 22 lines of code even
though phpBB is 172,000 lines of code.

As a point of comparison for programmer effort, consider the
MoinMoin access control scheme that appeared in the Flume evalu-
ation [28]. MoinMoin uses ACLs to limit who can read and write
a wiki page. To implement this scheme under Flume, the program-
mer partitions MoinMoin into a number of components, each with
different privileges, and then sets up the OS to enforce the access
control system using information flow control. Adapting MoinMoin
to use Flume requires modifying or writing about 2,000 lines of
application code. In contrast, RESIN can check the same MoinMoin
access control scheme using two assertions, an eight line assertion
for reading, and a 15 line assertion for writing, as shown in Ta-
ble 4. Most importantly, adding these checks with RESIN requires
no structural or design changes to the application.

Although Flume provides assurance against malicious server code
and RESIN does not, the RESIN assertions catch the same two
vulnerabilities (see Section 6.2) that Flume catches, because they do
not involve binary code injection. By focusing on a weaker threat
model, RESIN’s lightweight and easy-to-use mechanisms provide
a compelling choice for programmers that want additional security
assurance without much extra effort.

6.2 Preventing Vulnerabilities
To evaluate whether RESIN’s data flow assertions are capable of

preventing vulnerabilities, we checked some of the assertions in
Table 4 against known vulnerabilities that the assertion should be
able to prevent. The results are shown in Table 4, where the number
of previously-known vulnerabilities is greater than zero.

The results in Table 4 show that each RESIN assertion does pre-
vent the vulnerabilities it aims to prevent. For example, the phpBB
access control assertion prevents a known missing access control
check listed in the CVE [41], and the HotCRP password protec-

9

App. Assertion Known Discovered Prevented
Application Lang. LOC LOC vuln. vuln. vuln. Vulnerability type

MIT EECS grad admissions Python 18,500 9 0 3 3 SQL injection
MoinMoin Python 89,600 8 2 0 2 Missing read access control checks

15 0 0 0 Missing write access control checks
File Thingie file manager PHP 3,200 19 0 1 1 Directory traversal, file access control
HotCRP PHP 29,000 23 1 0 1 Password disclosure

30 0 0 0 Missing access checks for papers
32 0 0 0 Missing access checks for author list

myPHPscripts login library PHP 425 6 1 0 1 Password disclosure
PHP Navigator PHP 4,100 17 0 1 1 Directory traversal, file access control
phpBB PHP 172,000 23 1 3 4 Missing access control checks

22 4 0 4 Cross-site scripting
many [3, 11, 16, 23, 36] PHP – 12 5 0 5 Server-side script injection

Table 4: Results from using RESIN assertions to prevent previously-known and newly discovered vulnerabilities in several Web applications.

tion assertion shown in Section 3.1 prevents the password disclo-
sure vulnerability described in Section 2. The assertion to prevent
server-side script injection described in Section 5.2 prevents such
vulnerabilities in five different applications [3, 11, 16, 23, 36].

Since we implemented these assertions with knowledge of the
previously-known vulnerabilities, it is possible that the assertions
are biased to thwart only those vulnerabilities. To address this bias,
we tried to find new bugs, as an adversary would, that violate the
assertions in Table 4. These results are shown in Table 4 where the
number of newly discovered vulnerabilities is greater than zero.

These results show that RESIN assertions can prevent vulnerabili-
ties, even if the programmer has no knowledge of the specific vulner-
abilities when writing the assertion. For example, we implemented a
generic data flow assertion to address SQL injection vulnerabilities
in MIT’s EECS graduate admissions system. Although the original
programmers were careful to avoid most SQL injection vulnerabili-
ties, the assertion revealed three previously-unknown SQL injection
vulnerabilities in the admission committee’s internal user interface.

As a second example, File Thingie and PHP Navigator are Web
based file managers, and both support a feature that limits a user’s
write access to a particular home directory. We implemented this
behavior as a write access filter as described in Section 3.2.3. Again,
both applications have code in place to check directory accesses, but
after a careful examination, we discovered a directory traversal vul-
nerability that violates the write access scheme in each application.
The data flow assertions catch both of these vulnerabilities.

As a final example, phpBB implements read access controls so
that only certain users can read certain forum messages. We imple-
mented an assertion to verify this access control scheme. In addition
to preventing a previously-known access control vulnerability, the
assertion also prevents three previously-unknown read access vi-
olations that we discovered. These results confirm that data flow
assertions in RESIN can thwart vulnerabilities, even if the program-
mer does not know they exist. Furthermore, these assertions likely
eliminate even more vulnerabilities that we are not aware of.

The three vulnerabilities in phpBB are not in the core phpBB
package, but in plugins written by third-party programmers. Large-
scale projects like phpBB are a good example of the benefit of
explicitly specifying data flow assertions with RESIN. Consider a
situation where a new programmer starts working on an existing
application like HotCRP or phpBB. There are many implicit rules
that programmers must follow in hundreds of places, such as who is
responsible for sanitizing what data to prevent SQL injection and
cross-site scripting, and who is supposed to call the access control

function. If a programmer starts writing code before understanding
all of these rules, the programmer can easily introduce vulnerabil-
ities, and this turned out to be the case in the phpBB plugins we
examined. Using RESIN, one programmer can make a data flow rule
explicit as an assertion and then RESIN will check that assertion for
all the other programmers.

These results also provide examples of a single data flow asser-
tion thwarting more than one instance of an entire class of vulner-
abilities. For example, the single read access assertion in phpBB
thwarts four specific instances of read access vulnerabilities (see
Table 4). As another example, a single server-side script injection
assertion that works in all PHP applications catches five different
previously-known vulnerabilities in the PHP applications we tested
(see Table 4). This suggests that when a programmer inevitably finds
a security vulnerability and writes a RESIN assertion that addresses
it, the assertion will prevent the broad class of problems that allow
the vulnerability to occur in the first place, rather than only fixing
the one specific instance of the problem.

6.3 Generality
To evaluate whether RESIN data flow assertions are general

enough to cover the many data flow paths available to an adver-
sary, we checked whether the assertions we wrote detect a number
of data flow bugs that use surprising data flow channels.

The results indicate that a high-level RESIN assertion can detect
and prevent vulnerabilities even if the vulnerability takes advantage
of an unanticipated data flow path. For example, a common way
for an adversary to exploit a cross-site scripting vulnerability is
to enter malicious input through HTML form inputs. However,
there was a cross-site scripting vulnerability in phpBB due to a
more unusual data path. In this vulnerability, phpBB requests data
from a whois server and then uses the response without sanitizing it
first; an adversary exploits this vulnerability by inserting malicious
JavaScript code into a whois record and then requesting the whois
record via phpBB. The RESIN assertion that protects against cross-
site scripting in phpBB, listed in Table 4, prevents vulnerabilities
at a high-level; the assertion treats all external input as untrusted
and makes sure that the external input data flows through a sanitizer
before phpBB may use the data in HTML. This assertion is able
to prevent both the more common HTML form attack as well as
the less common whois style attack because the assertion is general
enough to cover many possible data flow paths.

A second example is in the read access controls for phpBB’s
forum messages. The common place to check for read access is

10

before displaying the message to a user, but one of the read access
vulnerabilities, listed in Table 4, results from a different data flow
path. When a user replies to a message, phpBB includes a quotation
of the original message in the reply message. In the vulnerable ver-
sion, phpBB also allows a user to reply to a message even if the user
lacks permission to read the message. To exploit this vulnerability,
an adversary, lacking permission to read a message, replies to the
message using its message ID, and then reads the content of the
original message, quoted in the reply template. The RESIN asser-
tion that checks the read access controls prevents this vulnerability
because the assertion detects data flow from the original message to
the adversary’s browser, regardless of the path taken.

A final example comes from the two password disclosure vulner-
abilities shown in Table 4. As described in Section 5, the HotCRP
disclosure results from a logic bug in the email preview and the email
reminder features. In contrast, the disclosure in the myPHPscripts
login library [33] results from the library storing its users’ pass-
words in a plain-text file in the same HTTP-accessible directory that
contains the library’s PHP files [35]. To exploit this, an adversary
requests the password file with a Web browser. Despite prevent-
ing password disclosure through two different data flow paths, the
assertions for password disclosure in HotCRP and myPHPscripts
are very similar (the only difference is that HotCRP allows email
reminders and myPHPscripts does not). This shows that a single
RESIN data flow assertion can prevent attacks through a wide range
of attack vectors and data paths.

7. PERFORMANCE EVALUATION
Although the main focus of RESIN is to improve application secu-

rity, application developers may be hesitant to use these techniques
if they impose a prohibitive performance overhead. In this section,
we show that RESIN’s performance is acceptable. We first mea-
sure the overhead of running HotCRP with and without the use of
RESIN, and then break down the low-level costs that account for the
overhead using microbenchmarks. The overall result is that a com-
plex Web application like HotCRP incurs a 33% CPU overhead for
generating a page, which is unlikely to be noticeable by end-users.

The following experiments were run on a single core of a 2.3GHz
Xeon 5140 server with 4GB of memory running Linux 2.6.22. The
unmodified PHP interpreter is version 5.2.5, the same version that
the RESIN PHP interpreter is based on.

7.1 Application Performance
To evaluate the system-level overhead of RESIN, we compare a

modified version of HotCRP running in the RESIN PHP interpreter
against an unmodified version of HotCRP 2.26 running in an un-
modified PHP interpreter. We measured the time to generate the
Web page for a specific paper in HotCRP, including the paper’s title,
abstract, and author list (if not anonymized), as if a PC member
requested it through a browser. The measured runtime includes the
time taken to parse PHP code, recall the session state, make SQL
queries, and invoke the relevant data flow assertions. In this exam-
ple, RESIN invoked two assertions: one protected the paper title and
abstract (and the PC member was allowed to see them), and the other
protected the author list (and the PC member was not allowed to see
it, due to anonymization). We used the output buffering technique
from Section 5.5 to present a consistent interface even when the
author list policy raised an exception. The resulting page consisted
of 8.5KB of HTML.

The unmodified version of HotCRP generates the page in 66ms
(15.2 requests per second) and the RESIN version uses 88ms (11.4
requests per second), averaged over 2000 trials. The performance
of this benchmark is CPU limited. Despite our unoptimized RESIN

Unmodified RESIN RESIN
Operation PHP no policy empty policy
Assign variable 0.196 µs 0.210 µs 0.214 µs
Function call 0.598 µs 0.602 µs 0.619 µs
String concat 0.315 µs 0.340 µs 0.463 µs
Integer addition 0.224 µs 0.247 µs 0.384 µs
File open 5.60 µs 7.05 µs 18.2 µs
File read, 1KB 14.0 µs 16.6 µs 26.7 µs
File write, 1KB 57.4 µs 60.5 µs 71.7 µs
SQL SELECT 134 µs 674 µs 832 µs
SQL INSERT 64.8 µs 294 µs 508 µs
SQL DELETE 64.7 µs 114 µs 115 µs

Table 5: The average time taken to execute different operations in
an unmodified PHP interpreter, a RESIN PHP interpreter without
any policy, and a RESIN PHP interpreter with an empty policy.

prototype, its performance is likely to be adequate for many real
world applications. For example, in the 30 minutes before the SOSP
submission deadline in 2007, the HotCRP submission system logged
only 390 user actions. Even if there were 10 page requests for each
logged action (likely an overestimate), this would only average to
2.2 requests per second and a CPU utilization of 14.3% without
RESIN, or 19.1% with RESIN on a single core. Adding a second
CPU core doubles the throughput.

7.2 Microbenchmarks
To determine the source of RESIN’s overhead, we measured the

time taken by individual operations in an unmodified PHP inter-
preter, and a RESIN PHP interpreter both without any policy and
with an empty policy. The results of these microbenchmarks are
shown in Table 5.

For operations that simply propagate policies, such as variable
assignments and function calls, RESIN incurs a small absolute over-
head of 4-21ns, but percentage wise, this is about a 10% overhead.
This overhead is due to managing the policy set objects.

The overhead for invoking a filter object’s interposition method
(filter_read, filter_write, and filter_func) is the same as for a stan-
dard function call, except that RESIN calls the interposition method
once for every call to read or write. Therefore the application pro-
grammer has some control over how much interposition overhead
the application will incur. For example, the programmer can control
the amount of computation the interposition method performs, and
the number of times the application calls read and write.

For operations that track byte-level policies, such as string con-
catenation, the overhead without any policy is low (8%), but in-
creases when a policy is present (47%). This reflects the cost of
propagating byte-level policies for parts of the string at runtime as
well as more calls to malloc and free. A more efficient implementa-
tion of byte-level policies could reduce these calls.

Operations that merge policies (such as integer addition, which
cannot do byte-level tracking) are similarly inexpensive without a
policy (10%), but are more expensive when a policy is applied (71%).
This reflects the cost of invoking the programmer-supplied merge
function. However, in all the data flow assertions we encountered,
we did not need to apply policies to integers, so this might not have
a large impact on real applications.

For file open, read, and write, RESIN adds potentially noticeable
overhead, largely due to the cost of serializing, de-serializing, and
invoking policies and filters stored in a file’s extended attributes.
Caching file policies in the runtime will likely reduce this overhead.

The INSERT operation listed in Table 5 inserts 10 cells, each
into a different column, and the SELECT operation reads 10 cells,
each from a different column. When there is an empty policy, each

11

datum has the policy. The overhead without any policy is 229–
540µs (354%–403%), and that with an empty policy is 443–698µs
(521%–684%). RESIN’s overhead is related to the size of the query,
and the number of columns that have policies; reducing the number
of columns returned by a query reduces the overhead for a query.
For example, a SELECT query that only requests six columns with
policies takes 578µs in RESIN compared to 109µs in unmodified
PHP. The DELETE operation has a lower overhead because it does
not require rewriting queries or results.

RESIN’s overhead for SQL operations is relatively high because
it parses and translates each SQL query in order to determine the
policy object for each data item that the query stores or fetches. Our
current implementation performs much of the translation in a library
written in PHP; we expect that converting all of it to C would offer
significant speedup. Note that, even with our high overhead for SQL
queries, the overall application incurs a much smaller performance
overhead, such as 33% in the case of HotCRP.

8. LIMITATIONS AND FUTURE WORK
RESIN currently has a number of limitations which we plan to

address in future work. First, we would like to provide better support
for data integrity invariants. Instead of requiring programmers to
specify what writes are allowed using filter objects, we envision
using transactions to buffer database or file system changes, and
checking a programmer-specified assertion before committing them.

Second, we would like to add the ability to construct internal data
flow boundaries within an application. For example, an assertion
could prevent clear-text passwords from flowing out of the software
module that handles passwords. Attaching filter objects to func-
tion calls helps with these boundaries, but languages like PHP and
Python allow code to read and write data in another module’s scope
as if they were global variables. An internal data flow boundary
would need to address these data flow paths.

We would also like to extend RESIN to allow data flow assertions
to span multiple runtimes, possibly including Javascript and SQL.
We are considering a few possible approaches, including a generic
representation of policy objects, or mechanisms to invoke the policy
object’s original runtime for performing policy checks. Also, we
are interested in extending RESIN to propagate policies between
machines in a distributed system similar to the way DStar [52] does
with information flow labels.

We are looking for easier ways to implement data tracking in a
language runtime, perhaps with OS or VMM support. Adding data
tracking to PHP required modifying the interpreter in 103 locations
to propagate policies; ideally, applying these techniques to new
runtimes would require fewer changes. For example, it might be
possible to implement RESIN without modifying the language run-
time, given a suitable object-oriented system. The implementation
would override all string operations to propagate policy objects, and
override storage system interfaces to implement filter objects.

Finally, dynamic data tracking adds runtime overheads and presents
challenges to tracking data through control flow paths. We would
like to investigate whether static analysis or programmer annotations
can help check RESIN-style data flow assertions at compile time.

9. RELATED WORK
RESIN makes a number of design decisions regarding how pro-

grammers specify policies and how RESIN tracks data. This section
relates RESIN’s design to prior work.

9.1 Policy Specification

In RESIN, programmers define a data flow assertion by writing
policy objects and filter objects in the same language as the rest
of the application. Previous work in policy description languages
focuses on specifying policies at a higher level, to make policies eas-
ier to understand, manage [6, 12, 14], analyze [20], and specify [2].
While these policy languages do not enforce security directly, hav-
ing a clearly defined policy specification allows reasoning about
the security of a system, performing static analysis [17, 18], and
composing policies in well-defined ways [1, 7, 43]. Doing the same
in RESIN is challenging because programmers write assertions in
general-purpose code. In future work, techniques like program anal-
ysis could help formalize RESIN’s policies [4], to bring some of
these benefits to RESIN, or to allow performance optimizations.

Lattice-based label systems [9, 10, 13, 15, 28, 32, 51] control
data flow by assigning labels to objects. Expressing policies using
labels can be difficult [14], and can require re-structuring applica-
tions. Once specified, labels objectively define the policy, whereas
RESIN assertions require reasoning about code. For more complex
policies, labels are not enough, and many applications use trusted
declassifiers to transform labels according to application-specific
rules (e.g. encryption declassifies private data). Indeed, a large part
of re-structuring an application to use labels involves writing and
placing declassifiers. RESIN’s design can be thought of as speci-
fying the declassifier (policy object) in the label, thus avoiding the
need to place declassifiers throughout the application code.

Since RESIN programmers define their own policy and filter ob-
jects, programmers can implement data flow assertions specific to
an application, such as ensuring that every string that came from
one user is sanitized before being sent to another user’s browser.
RESIN’s assertions are more extensible than specialized policy lan-
guages [19], or tools designed to find specific problems, such as SQL
injection or cross-site scripting [21, 22, 29, 30, 34, 39, 44, 47, 49].

PQL [30] allows programmers to run application-specific program
analyses on their code at development time, including analyses that
look for data flow bugs such as SQL injection. However, PQL is
limited to finding data flows that can be statically analyzed, with
the help of some development-time runtime checks, and cannot find
data flows that involve persistent storage. This could miss some
subtle paths that an attacker might trigger at runtime, and would not
prevent vulnerabilities in plug-ins added by end-users.

FABLE [40] allows programmers to customize the type system
and label transformation rules, but requires the programmer to define
a type system in a specialized language, and use the type system
to implement the applications’ data flow schemes. RESIN, on the
other hand, implements data tracking orthogonal to the type system,
requiring fewer code modifications, and allowing programmers to
reuse existing code in their assertions.

Systems like OKWS [27] and Privman [25] enforce security by
having programmers partition their application into less-privileged
processes. By operating in the language runtime, RESIN’s policy and
filter objects track data flows and check assertions at a higher level of
abstraction, avoiding the need to re-structure applications. However,
RESIN cannot protect against compromised server processes.

9.2 Data Tracking
Once the assertions are in place, RESIN tracks explicit flows of

application data at runtime, as it moves through the system. RESIN
does not track data flows through implicit channels, such as program
control flow and data structure layout, because implicit flows can be
difficult to reason about, and often do not correspond to data flow
plans the programmer had in mind. Implicit data flows can lead to
“taint creep”, or increasingly tainted program control flow, as the
application executes, which can make the system difficult to use

12

in practice. In contrast, systems like Jif [32] track data through all
channels, including program control flow, and can catch subtle bugs
that leak data through these channels. By relying on a well-defined
label system, Jif can also avoid runtime checks in many cases, and
rely purely on compile-time static checking, which reduces runtime
overhead.

RESIN’s data tracking is central to its ability to implement data
flow assertions that involve data movement, like SQL injection
or cross-site scripting protection. Other program checkers, like
Spec# [5, 6], check program invariants, but focus on checking func-
tion pre- and post-conditions and do not track data. Aspect-oriented
programming (AOP) [45] provides a way to add functionality, in-
cluding security checks, that cuts across many different software
modules, but does not perform data tracking. However, AOP does
help programmers add new code throughout an application’s code
base, and could be used to implement RESIN filter objects.

By tracking data flow in a language runtime, RESIN can track
data at the level of existing programming abstractions—variables,
I/O channels, and function calls—much like in Jif [32]. This allows
programmers to use RESIN without having to restructure their ap-
plications. This differs from OS-level IFC systems [15, 28, 50, 51]
which track data flowing between processes, and thus require pro-
grammers to expose data flows to the OS by explicitly partitioning
their applications into many components according to the data each
component should observe. On the other hand, these OS IFC sys-
tems can protect against compromised server code, whereas RESIN
assumes that all application code is trusted; a compromise in the
application code can bypass RESIN’s assertions.

Some bug-specific tools use data tracking to prevent vulnerabil-
ities such as cross-site scripting [24], SQL injection [34, 44], and
untrusted user input [8, 37, 42]. While these tools inspired RESIN’s
design, they effectively hard-code the assertion to be checked into
the design of the tool. As a result, they are not general enough
to address application-specific data flows, and do not support data
flow tracking through persistent storage. One potential advantage
of these tools is that they do not require the programmer to modify
their application in order to prevent well-known vulnerabilities such
as SQL injection or cross-site scripting. We suspect that with RESIN,
one developer could also write a general-purpose assertion that can
be then applied to other applications.

10. CONCLUSION
Programmers often have a plan for correct data flow in their

applications. However, today’s programmers often implement their
plans implicitly, which requires the programmer to insert the correct
code checks in many places throughout an application. This is
difficult to do in practice, and often leads to vulnerabilities.

This work takes a step towards solving this problem by introduc-
ing the idea of a data flow assertion, which allows a programmer
to explicitly specify a data flow plan, and then have the language
runtime check it at runtime. RESIN provides three mechanisms for
implementing data flow assertions: policy objects associated with
data, data tracking as data flows through an application, and filter
objects that define data flow boundaries and control data movement.

We evaluated RESIN by adding data flow assertions to prevent
security vulnerabilities in existing PHP and Python applications.
Results show that data flow assertions are effective at preventing
a wide range of vulnerabilities, that assertions are short and easy
to write, and that assertions can be added incrementally without
having to restructure existing applications. We hope these benefits
will entice programmers to adopt our ideas in practice.

Acknowledgments
We thank Michael Dalton, Eddie Kohler, Butler Lampson, Robert
Morris, Neha Narula, Jerry Saltzer, Jacob Strauss, Jeremy Stribling,
and the anonymous reviewers for their feedback. This work was
supported by Nokia Research.

References
[1] G. Ahn, X. Zhang, and W. Xu. Systematic policy analysis

for high-assurance services in SELinux. In Proc. of the 2008
POLICY Workshop, pages 3–10, Palisades, NY, June 2008.

[2] A. H. Anderson. An introduction to the web services policy
language (WSPL). In Proc. of the 2004 POLICY Workshop,
pages 189–192, Yorktown Heights, NY, June 2004.

[3] J. Bae. Vulnerability of uploading files with multiple
extensions in phpBB attachment mod. http://seclists.
org/fulldisclosure/2004/Dec/0347.html.
CVE-2004-1404.

[4] S. Barker. The next 700 access control models or a unifying
meta-model? In Proc. of the 14th ACM Symposium on Access
Control Models and Technologies, pages 187–196, Stresa, Italy,
June 2009.

[5] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino. Boogie: A modular reusable verifier for object-oriented
programs. In Proc. of the 4th International Symposium on
Formal Methods for Components and Objects, pages 364–387,
Amsterdam, The Netherlands, November 2005.

[6] M. Barnett, K. Rustan, M. Leino, and W. Schulte. The Spec#
programming system: An overview. In Proc. of the Workshop
on Construction and Analysis of Safe, Secure and Interoper-
able Smart devices, pages 49–69, Marseille, France, March
2004.

[7] L. Bauer, J. Ligatti, and D. Walker. Composing security poli-
cies with Polymer. In Proc. of the 2005 PLDI, pages 305–314,
Chicago, IL, June 2005.

[8] W. Chang, B. Streiff, and C. Lin. Efficient and extensible
security enforcement using dynamic data flow analysis. In
Proc. of the 15th CCS, pages 39–50, Alexandria, VA, October
2008.

[9] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,
and X. Zheng. Secure web applications via automatic parti-
tioning. In Proc. of the 21st SOSP, pages 31–44, Stevenson,
WA, October 2007.

[10] S. Chong, K. Vikram, and A. C. Myers. SIF: Enforcing con-
fidentiality and integrity in web applications. In Proc. of the
16th USENIX Security Symposium, pages 1–16, Boston, MA,
August 2007.

[11] CWH Underground. Kwalbum arbitrary file upload vulnerabil-
ities. http://www.milw0rm.com/exploits/6664.
CVE-2008-5677.

[12] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder
policy specification language. In Proc. of the 2001 POLICY
Workshop, pages 18–38, Bristol, UK, January 2001.

[13] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, May 1976.

[14] P. Efstathopoulos and E. Kohler. Manageable fine-grained
information flow. In Proc. of the 3rd ACM EuroSys conference,
pages 301–313, Glasgow, UK, April 2008.

[15] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and R. Mor-
ris. Labels and event processes in the Asbestos operating

13

system. In Proc. of the 20th SOSP, pages 17–30, Brighton,
UK, October 2005.

[16] Emory University. Multiple vulnerabilities in AWStats
Totals. http://userwww.service.emory.edu/
~ekenda2/EMORY-2008-01.txt. CVE-2008-3922.

[17] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking sys-
tem rules using system-specific, programmer-written compiler
extensions. In Proc. of the 4th OSDI, pages 1–16, San Diego,
CA, October 2000.

[18] D. Evans and D. Larochelle. Improving security using extensi-
ble lightweight static analysis. IEEE Software, 19(1):42–51,
January/February 2002.

[19] D. F. Ferraiolo and D. R. Kuhn. Role-based access control.
In Proc. of the 15th National Computer Security Conference,
pages 554–563, Baltimore, MD, October 1992.

[20] S. Garriss, L. Bauer, and M. K. Reiter. Detecting and resolving
policy misconfigurations in access-control systems. In Proc.
of the 13th ACM Symposium on Access Control Models and
Technologies, pages 185–194, Estes Park, CO, June 2008.

[21] W. G. J. Halfond and A. Orso. AMNESIA: analysis and moni-
toring for neutralizing SQL-injection attacks. In Proc. of the
20th ACM International Conference on Automated Software
Engineering, pages 174–183, Long Beach, CA, November
2005.

[22] W. G. J. Halfond, A. Orso, and P. Manolios. Using positive
tainting and syntax-aware evaluation to counter SQL injection
attacks. In Proc. of the 14th FSE, pages 175–185, Portland,
OR, November 2006.

[23] N. Hippert. phpMyAdmin code execution vulnerability. http:
//fd.the-wildcat.de/pma_e36a091q11.php.
CVE-2008-4096.

[24] S. Kasatani. Safe ERB plugin. http://
agilewebdevelopment.com/plugins/safe_erb.

[25] D. Kilpatrick. Privman: A library for partitioning applications.
In Proc. of the 2003 USENIX Annual Technical Conference,
FREENIX track, pages 273–284, San Antonio, TX, June 2003.

[26] E. Kohler. Hot crap! In Proc. of the Workshop on Organizing
Workshops, Conferences, and Symposia for Computer Systems,
San Francisco, CA, April 2008.

[27] M. Krohn. Building secure high-performance web services
with OKWS. In Proc. of the 2004 USENIX Annual Technical
Conference, pages 185–198, Boston, MA, June–July 2004.

[28] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for standard
OS abstractions. In Proc. of the 21st SOSP, pages 321–334,
Stevenson, WA, October 2007.

[29] V. B. Livshits and M. S. Lam. Finding security vulnerabilities
in Java applications with static analysis. In Proc. of the 14th
USENIX Security Symposium, pages 271–286, Baltimore, MD,
August 2005.

[30] M. Martin, B. Livshits, and M. Lam. Finding application errors
and security flaws using PQL: a program query language. In
Proc. of the 2005 OOPSLA, pages 365–383, San Diego, CA,
October 2005.

[31] MoinMoin. The MoinMoin wiki engine. http://
moinmoin.wikiwikiweb.de/.

[32] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model. ACM TOCS, 9(4):410–442, October
2000.

[33] myPHPscripts.net. Login session script. http://www.
myphpscripts.net/?sid=7. CVE-2008-5855.

[34] A. Nguyen-tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically hardening Web applications using
precise tainting. In Proc. of the 20th IFIP International In-
formation Security Conference, pages 295–307, Chiba, Japan,
May 2005.

[35] Osirys. myPHPscripts login session password disclo-
sure. http://nvd.nist.gov/nvd.cfm?cvename=
CVE-2008-5855. CVE-2008-5855.

[36] Osirys. wPortfolio arbitrary file upload exploit. http:
//www.milw0rm.com/exploits/7165. CVE-2008-
5220.

[37] Perl.org. Perl taint mode. http://perldoc.perl.org/
perlsec.html.

[38] phpMyAdmin. phpMyAdmin 3.1.0. http://www.
phpmyadmin.net/.

[39] T. Pietraszek and C. V. Berghe. Defending against injection
attacks through context-sensitive string evaluation. In Proc.
of the 8th International Symposium on Recent Advances in
Intrusion Detection, pages 124–145, Seattle, WA, September
2005.

[40] N. Swamy, B. J. Corcoran, and M. Hicks. Fable: A language
for enforcing user-defined security policies. In Proc. of the
2008 IEEE Symposium on Security and Privacy, pages 369–
383, Oakland, CA, May 2008.

[41] The MITRE Corporation. Common vulnerabilities and expo-
sures (CVE) database. http://cve.mitre.org/data/
downloads/.

[42] D. Thomas, C. Fowler, and A. Hunt. Programming Ruby: The
Pragmatic Programmers’ Guide. Pragmatic Bookshelf, 2004.

[43] M. C. Tschantz and S. Krishnamurthi. Towards reasonabil-
ity properties for access-control policy languages. In Proc.
of the 11th ACM Symposium on Access Control Models and
Technologies, pages 160–169, Lake Tahoe, CA, June 2006.

[44] W. Venema. Taint support for PHP. http://wiki.php.
net/rfc/taint.

[45] J. Viega, J. T. Bloch, and P. Chandra. Applying aspect-oriented
programming to security. Cutter IT Journal, 14(2):31–39,
February 2001.

[46] T. Waldmann. Check the ACL of the included page when us-
ing the rst parser’s include directive. http://hg.moinmo.
in/moin/1.6/rev/35ff7a9b1546. CVE-2008-6548.

[47] G. Wassermann and Z. Su. Sound and precise analysis of Web
applications for injection vulnerabilities. In Proc. of the 2007
PLDI, pages 32–41, San Diego, CA, June 2007.

[48] Web Application Security Consortium. 2007 web applica-
tion security statistics. http://www.webappsec.org/
projects/statistics/wasc_wass_2007.pdf.

[49] Y. Xie and A. Aiken. Static detection of security vulnerabilities
in scripting languages. In Proc. of the 15th USENIX Security
Symposium, pages 179–192, Vancouver, BC, Canada, July
2006.

[50] A. Yumerefendi, B. Mickle, and L. P. Cox. TightLip: Keeping
applications from spilling the beans. In Proc. of the 4th NSDI,
pages 159–172, Cambridge, MA, April 2007.

[51] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In Proc. of the 7th
OSDI, pages 263–278, Seattle, WA, November 2006.

[52] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. Securing
distributed systems with information flow control. In Proc. of
the 5th NSDI, pages 293–308, San Francisco, CA, April 2008.

14

