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ABSTRACT
VERSUM allows lightweight clients to outsource expensive compu-
tations over large and frequently changing data structures, such as
the Bitcoin or Namecoin blockchains, or a Certificate Transparency
log. VERSUM clients ensure that the output is correct by comparing
the outputs from multiple servers. VERSUM assumes that at least
one server is honest, and crucially, when servers disagree, VERSUM
uses an efficient conflict resolution protocol to determine which
server(s) made a mistake and thus obtain the correct output.

VERSUM’s contribution lies in achieving low server-side over-
head for both incremental re-computation and conflict resolution,
using three key ideas: (1) representing the computation as a func-
tional program, which allows memoization of previous results; (2)
recording the evaluation trace of the functional program in a care-
fully designed computation history to help clients determine which
server made a mistake; and (3) introducing a new authenticated data
structure for sequences, called SEQHASH, that makes it efficient
for servers to construct summaries of computation histories in the
presence of incremental re-computation. Experimental results with
an implementation of VERSUM show that VERSUM can be used
for a variety of computations, that it can support many clients, and
that it can easily keep up with Bitcoin’s rate of new blocks with
transactions.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection

Keywords
Verifiable Computation; Cloud Computing

1. INTRODUCTION
Systems such as Bitcoin [15] provide publicly available logs,

whose validity is guaranteed. The logs are large (e.g., the Bitcoin
blockchain was 14 GB as of January 2014) and many records are
added daily (e.g., on average every 10 min an entry is added to the
Bitcoin blockchain). To run computations over these logs requires a
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powerful computer, because a computation may require processing
the entire log, which can take a long time (a few hours) and requires
the computer to store the whole log.

VERSUM is a new system for securely outsourcing computations
over frequently changing inputs, supporting many clients. With
VERSUM, a lightweight client can outsource a computation over
the entire Bitcoin blockchain and learn the correct result. VERSUM
is a refereed delegation of computation, or RDoC, system [7]. A
VERSUM client outsources a computation to a pool of independent
servers, and can determine the correct result as long as it can reach
one honest server. To handle large inputs, outputs, and intermediate
state, VERSUM stores all data in authenticated data structures.

Refereed delegation of computation systems assume a trust model
based on the practical assumptions that not all servers will be com-
promised. The challenge in designing a RDoC system is performing
the refereeing on the client. It is not enough to merely look for a
majority of agreeing servers: a RDoC system must provide the cor-
rect result even if all servers disagree. Using its conflict resolution
protocol (§6), VERSUM can ask a server to prove that a conflicting
server made a mistake. The conflict resolution protocol is based
on Quin’s [7]. When two servers disagree on the outcome of a
computation, Quin splits the computation in many parts and finds
the first point at which two servers disagreed. Then, it determines
which server made a mistake, and continues with the honest server.

Unlike Quin, VERSUM supports incremental updates of inputs.
Incremental updates happen, for example, when a new log entry is
added to the Bitcoin blockchain, VERSUM can update its compu-
tation to include the latest transactions from the log. Supporting
incremental updates is challenging because the server must prove
that it performed the entire new computation correctly; handling
updates one by one does not scale with many updates. VERSUM
efficiently performs the new computation in its entirety by reusing
parts of the old computation. To support reuse, VERSUM represents
computations as purely functional programs. These programs have
no global state, which can make programming more difficult; how-
ever, because they have no global state, computations can be reused.
Quin cannot reuse computations as its x86 computations have global
state, and thus change completely when the input is changed even
slightly.

During conflict resolution, VERSUM uses computation histo-
ries (§4) that describe the evaluation of its functional programs.
Computation histories can be reused to support incremental up-
dates, and can be efficiently extended so that clients can perform
conflict resolution. Conflict resolution requires a data structure for
holding computation histories that supports fast lookups and com-
parison. Supporting incremental updates requires a data structure
that supports efficient concatenation of computation histories. The
SEQHASH (§5) is the first data structure to efficiently support all
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of these operations in an adversarial setting, formally stated and
proven in Appendix A.

We have implemented VERSUM and three applications on top of
the Bitcoin blockchain in 2,800 lines of Go (§7). As an example, one
of these applications computes the set of unspent transactions in Bit-
coin, a common computation in practice. The VERSUM prototype
can run this computation over the unmodified Bitcoin blockchain;
it uses an existing Go library to read and store Bitcoin data struc-
tures. A VERSUM server running this computation creates around
365 GB of authenticated data structures for a recent snapshot of
the blockchain, which contains 14 GB of Bitcoin blocks and a total
of 30 million transactions. Our prototype automatically pages the
authenticated data structures to and from disk, so that applications
can effectively perform large computations.

Experiments with this prototype (§9) show that a server can sup-
port many clients (e.g., a server can serve 4,000 queries per second
for the unspent Bitcoin transaction application), and that servers can
incorporate new Bitcoin blocks in seconds, which is sufficient to
keep up with the growth of the Bitcoin blockchain (which grows by
one block approximately every ten minutes).

Although we demonstrated VERSUM’s applicability using a Bit-
coin log, we expect VERSUM to be applicable in increasingly more
situations as more data is available in the form of authenticated
logs. VERSUM’s design could be used to determine if a certificate
has been revoked in the Certificate Transparency system [12], to
perform name lookups in Namecoin [2], etc. One can even view all
git repositories as authenticated data structures that VERSUM could
compute over.

2. BACKGROUND
VERSUM depends on two key previous ideas: authenticated data

structures and the refereed delegation of computation model. This
section provides the necessary background about these two ideas so
that the reader can understand VERSUM’s design.

2.1 Authenticated data structures
Authenticated data structures [20] (ADSs) allow a client to out-

source storage of large data sets to a server without trusting that
server [14]. The client stores a small authenticator (for example,
a hash) that summarizes all data stored on the server. With that
authenticator, the client can then verify operations, such as lookups
in a dictionary, performed by the server.

Using Miller et al.’s approach [14], VERSUM transparently trans-
forms any functional data structure into an ADS. Behind the scenes,
such a data structure is recursively hashed (like a Merkle hash-tree),
and the authenticator is the root hash, the hash at the top of the tree.
The programmer writes only the normal lookup function, and all
hash computation and verification is handled automatically.

For example, consider a client outsourcing the storage of a binary
search tree to a server. To perform a lookup in the tree, the client
asks the server to perform a lookup, and to transmit all the nodes that
the lookup function accessed to the client. The client then checks
that the server sent the correct nodes by computing the hashes, and
performs the lookup itself to determine the result. If either the
hashes are incorrect, or the server has not sent some required nodes,
the computation fails. Otherwise, the client is guaranteed a correct
result, as it has performed the computation itself on the correct input.
For terminology, in the remainder of the paper, we will refer to the
values accessed by the server that let a client verify a computation a
proof.

While ADSs might seem to outsource computation as well as
storage, ADSs do not speed up computation on the client, as the
client must still perform the computation itself after the server has

done so. For this reason, VERSUM does not use ADSs to outsource
the entire computation, and instead uses ADSs to store data for the
larger computation, so that the client can verify that small steps of
the computation happened correctly.

2.2 Refereed delegation of computation
Refereed delegation of computation is a setting for outsourcing

computation in a verifiable manner. A RDoC system allows a client
to learn the correct result of a computation if it can talk to a pool of
servers, at least one of which is honest. Even if all other dishonest
servers are cooperating to try and deceive the client, the client will
still learn the correct result. The client does not have to specify
which server it thinks is honest; it merely needs to talk to a pool
servers of which it believes at least one to be honest.

In effect, the client assumes that all server operators are honest
(there is no point in talking to dishonest servers), but that a server
might be compromised or coerced into deceiving a client. By out-
sourcing computation to a pool of independent servers, a client is
protected against individual servers getting compromised.

Quin is a RDoC system for verifying the execution of Turing
machines, applied to x86 binaries [7]. When two servers disagree on
the outcome of a computation, Quin figures out which server made
a mistake by finding the first step of the Turing machine the two
servers disagreed on. To find this step, the client performs a binary
search, with the goal of finding a state of the Turing machine that
both servers agreed, with a consecutive state the servers disagree
on:

Let n be the number of steps of the shortest computation. First,
the client asks both servers to commit to their computation’s state
after n/2 steps. Then, if they agree, the client asks for the state at
3n/4 steps, otherwise at n/4 steps, and so forth. Eventually, both
servers will have committed to a state after m steps on which they
agree, and two distinct states after m+ 1 steps. At this point, the
honest server will be able to show that it advanced its state correctly,
and the client can from then on ignore the dishonest server. Note
that this point must exist, as the two servers agree on the initial state
which defines the computation, and disagree, by definition, on the
outcome of the computation.

Quin’s computational model is general enough to let Quin run
standard x86 binaries, storing the state in a Merkle tree describing
the process’s memory. However, because Quin runs standard x86
binaries, it does not support incremental re-computation: when the
input changes, the Turing machine must be re-run completely.

3. OVERVIEW
VERSUM is a system for outsourcing computations in the RDoC

setting. VERSUM targets computations like processing large, grow-
ing logs: large computations with frequently updated inputs. An
end-to-end diagram of VERSUM can be found in Figure 1.

VERSUM represents computations as purely functional programs.
In these programs, individual function calls are self-contained and
have no side effects, so they can be reused in other computations.
This allows VERSUM to quickly update a computation when the in-
puts are updated. VERSUM can reuse computation histories because
its computations, unlike Quin’s Turing machines, are stateless.

To perform conflict resolution, VERSUM uses a conflict resolu-
tion protocol inspired by Quin, but modified to support VERSUM’s
functional model and incremental computation. Instead of working
with Turing machine state, a VERSUM server stores computation
histories that describe the evaluation of the functional program as a
sequence of function call and return records. When the input to a
VERSUM computation changes, the server can reuse (parts of) the
previous computation history to quickly build a new computation
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DEF1... 124A...Input:
log in a linked list

DEF1... 124A... C92D...

C92D...

New entry:Log head:

Server 1: Server 2: Server 3:

F() F() G()Computation:

Computation histories
(in SeqHash): a b c d e a b c d e a b x y z

Client Server 1 and 2 agree; both disagree with server 3.
Client performs conflict resolution:

Binary search to find
longest common prefix:

F() C92D...

a b x y z

Try length 2: a b a b

Agreed; try length 4:

Disagreed; try length 3:

a b c d a b x y

a b c d ea b c

a b c a b x

a b

a b c a b x

Resolve disagreement by
verifying next step: a b a b c

Found disagreement
after 2 steps:

modified by
adversary!

Figure 1: An overview of VERSUM. VERSUM computes over
an input known to both client and server, the log at the top of
the image. Three independent servers all compute F(). How-
ever, server 3 has been compromised, and instead computes
G(). Each server stores a computation history describing the
computation in a SEQHASH. The client, which knows both the
input and F(), detects that server 3 has a different outcome
than the other servers, and performs conflict resolution. After
finding the longest common prefix (using binary search), the
client discovers that server 3 made a mistake, and accepts the
output from servers 1 and 2.

history. In Figure 1, all servers perform a computation F over an
input log. Each server has a copy of the input, the computation,
and the computation history. All should be identical on all servers.
However, because server 3 has been compromised by an adversary,
its computation and computation history are different.

VERSUM uses computation histories as the state of a computation.
To advance this state, VERSUM uses a simple algorithm, called
DetermineNext, that computes the next record from an unfinished
computation history. DetermineNext reconstructs the evaluation
state at the end of the unfinished computation history, and from that
efficiently computes the next record. The algorithm is explained in
detail in §4.

Using DetermineNext, VERSUM’s conflict resolution protocol
is similar to Quin’s: when two servers disagree, a client performs a
binary search to find the longest (unfinished) computation history
that two servers agree on, and two computation histories one record
longer that the servers disagree on. Then, using DetermineNext,
the client can determine which server was honest. In Figure 1, VER-
SUM performs conflict resolution between servers 2 and 3, as their
computation histories abcde and abxyz are different. The client
finds the longest common prefix, ab, as well as two conflicting

F(x):
return G(x) + H(x)

G(x):
return H(x * 2) * 2

H(x):
return x + 1

Step Action
1: call F(5)
2: call G(5)
3: call H(10)
4: return H(10) = 11, computed in 2 steps
------------------------------------------------
5: return G(5) = 22, computed in 4 steps
6: call H(5)
7: return H(5) = 6, computed in 2 steps
8: return F(5) = 28, computed in 8 steps

Figure 2: An example program, together with a computation
history of F(5). The indentation and the step numbers (on the
left) are for ease of reading only, and are not actually stored by
VERSUM. The step counts (on the right) are stored by VER-
SUM. The prefix ending at step 4 is used as an example in §4.2.

prefixes, abc and abx. Using DetermineNext, the client can deter-
mine that abc is correct, and that server 3 must have performed an
incorrect computation.

VERSUM needs to store computation histories in a data struc-
ture that supports a number of operations. First, a server must
efficiently construct computation histories, both during a first run,
and during future incremental computations. That means that two
computation histories should be efficiently concatenable. Second,
two computation histories must be efficiently comparable during
conflict resolution, and must support DetermineNext invocations.
Finally, the data structure must be efficient even if adversaries con-
trol its inputs, as VERSUM’s external inputs might be contributed to
by anyone.

The SEQHASH data structure supports all operations needed by
VERSUM, and is the first data structure to do so. A SEQHASH is a
deterministically shaped hash-tree for holding sequences, supporting
efficient concatenation, comparison, and indexing. A SEQHASH’s
shape is determined by performing several merge rounds, during
which adjacent (leaf-)nodes stochastically get merged.

VERSUM stores all function arguments, return values, and the
computation history in authenticated data structures. When a server
constructs a DetermineNext proof, it must include the inputs and
outputs it computed over. Since internal state might be large, VER-
SUM uses ADSs to keep proofs small. DetermineNext also per-
forms operations on a SEQHASH, which can also be used as an ADS
because a SEQHASH is a functional data structure.

4. COMPUTATION HISTORIES
VERSUM’s computation histories help clients decide which server

performed a computation correctly. This section describes the struc-
ture of a computation history, how a computation history allows
clients to verify computations, and how parts of a computation
history can be reused among different computations.

4.1 Structure
VERSUM runs deterministic, side-effect-free functional programs.

A computation history is a log of the evaluation of such a program: a
computation history is a sequence of steps which are either function
calls or returns. Each function call is annotated with the function
name and arguments, and each function return contains the return
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DetermineNext(prefix):
index := length(prefix) - 1
expected := []
while prefix[index].type != call:
// store already-known answer to nested
// function call
ret := prefix[index]
call := prefix[index-ret.length+1]
expected = call .. ret .. expected
// move index to right before this
// function call
index -= ret.length

// it must be that prefix[index].type == call
innermost = prefix[index]
run innermost until expected is finished
return Concat(prefix, innermost’s next step)

Figure 3: The algorithm to extend a history prefix by one step.

value as well as the number of steps inside the function. VERSUM
runs functions with call-by-value evaluation. An example program
containing three functions F, G, and H, and a computation history for
F(5) can be found in Figure 2. The trace shows all calls, but does
not show computations performed inside the functions: while the
computation history shows that F called G and H, which returned 22
and 6 respectively, it does not show how F used those values.

This history has two important properties. First, a server can
efficiently prove that it extended an unfinished computation history
correctly, which is used by VERSUM’s conflict resolution protocol.
Second, (parts of) a computation history can be reused in a new
computation history, used by VERSUM’s computations over logs.

4.2 Extending computation histories
During conflict resolution VERSUM must extend computation

histories. When two servers have different computation histories,
a VERSUM client first finds the longest prefix common to the two
histories. Then, the client asks both servers to prove that their
version of the history correctly extended the prefix.

Such a proof can be constructed with the DetermineNext algo-
rithm, which takes in a computation history, determines the next
step, appends it to the history, and returns this new history. This
proof is an ADS proof (as described in §2), and works by letting a
client perform the computation locally. This proof should be small
to keep conflict resolution fast, and so DetermineNext must not
perform any unnecessary work.

The idea behind the algorithm is that the function that will per-
form the next step (the innermost incomplete, meaning not yet
returned, function call) can efficiently be run on the client up to
the point where it performs the next step, because any nested func-
tion calls made by the innermost incomplete function have their
results already available in the computation history. For example,
consider the prefix of the example history ending at step 4 in Fig-
ure 2. The innermost incomplete function call is G(5) at step 2.
DetermineNext can efficiently compute the result of G(5), as it
can use the result of H(10) at step 4 in the history.

Pseudocode for the DetermineNext algorithm can be found in
Figure 3. The DetermineNext algorithm determines the innermost
incomplete function call and the results of finished nested calls by
jumping from function return to call in the computation history using
the function lengths stored at each return step. DetermineNext
starts at the last step of the log. If this last step is a function call,
DetermineNext has found the innermost incomplete function call
and can continue to the next phase. Otherwise it has found the return
record of a completed nested call. It records the result of the nested

call and jumps to the location right before the corresponding call,
and repeats until it finds a call record.

In the example from Figure 2, DetermineNext starts by looking
at step 4, which is a return record. It stores the result of H(10)
= 11. Then, using the number of steps stored in the return record,
DetermineNext jumps to the record right before the start of H(10),
which is call G(5). This is the innermost incomplete function call
for this prefix.

Once DetermineNext has found the innermost incomplete call
and the results of already-completed nested calls, DetermineNext
can run the innermost incomplete function without recomputing the
already-known nested functions. Once the innermost incomplete
function executes past all of the already-known nested function
calls, it will either return or make a new call not yet in the history.
In both cases, DetermineNext obtains the next step of the inner-
most incomplete function without computing any other functions.
DetermineNext proofs remain short, even for highly recursive calls
over long linked lists.

4.3 Reusing computation histories
To support incremental updates, computation histories can be

reused. If a new computation calls a function with the same ar-
guments as in a previous computation, VERSUM can reuse that
invocation’s computation history from the previous computation.
For example, if a server had previously computed G(5) before
computing F(5), then it could copy the 4 steps describing G(5)
from the previous computation history, and concatenate it to F(5)’s
computation history, without performing the computation of G(5)
again.

For VERSUM, reusing computation histories is especially useful
when computing over growing logs. For example, consider a log
structured as a linked list. First, the server processes the entire log
with a recursive function. Then, the log gains a new entry, pointing
to the previous latest entry. Now the server can process this new
log efficiently by reusing the computation history for processing
the old log. To do so, the server starts by performing the new com-
putation as normal: it creates a new computation history, calls the
recursive processing function on the head of the new log, and adds
a corresponding call record to the computation history. Then, the
processing function recursively calls itself on the previous log head
to process the log up to the new entry. Now the server can reuse its
previous computation, as that computation already processed the
previous log; instead of performing the computation again, VER-
SUM can look up the cached result of the function. However, the
result by itself is not enough; the server must also construct a valid
computation history. To do so, it concatenates the entire cached
computation history of the previous invocation, including all inter-
nal call and return records. Afterwards, the processing function
can continue processing the new entry, and finish the computation.
In the end, the server has constructed a complete computation his-
tory for the entire new log, though it only had to actually perform
computation to process the new log entry.

Computation history reuse relies on VERSUM’s programming
model of side-effect-free functional programs: because a function
cannot access global state, its computation history for fixed argu-
ments must always be the same, and can safely be copied into a new
computation history.

4.4 Discussion
Not all function calls need to be part of the computation history,

and it is up to the developer to determine which calls to include in
the log. In practice, a short function like H should not be in the log,
as it will not significantly decrease DetermineNext proof sizes.
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The size of a DetermineNext proof is determined by the number
of calls made by the innermost unfinished function: for each of
those, the proof must include the result of the function. It is up to
the developer to keep the number of calls made by each function
reasonably small. Note that if a function becomes too long, it can
always be split in two parts, with the first part passing local variables
to the second part as arguments.

VERSUM efficiently supports incremental updates to the input
data structure if it can reuse previous computation histories. Func-
tions processing unchanged data should not have their arguments
changed. That is, computations should be structured in a memoization-
friendly way. For example, to compute a sum over a list, the running
total should not be passed as an argument, but should instead be
kept and later added by the calling function.

5. SEQHASH
VERSUM stores computation histories in SEQHASH, a novel

hash-tree structure for storing sequences. SEQHASH supports fast
positional indexing, fast concatenation, and is efficiently comparable
thanks to its deterministic structure. This section describes and
motivates SEQHASH.

5.1 Goals
To hold computation histories for VERSUM, SEQHASH needs

several properties:
Efficient lookup and concatenation. To keep DetermineNext

proofs small, SEQHASH must support fast lookups. When VERSUM
reuses (parts of) a computation history, the corresponding SEQHASH
must be efficiently concatenable to the new computation history.

Note that SEQHASH must support general concatenation (that
is, a SEQHASH will be constructed in different orders): at the end
of DetermineNext, SEQHASH must support concatenation with a
single step. However, when reusing computations, SEQHASH must
support concatenation with a large number of steps.

Efficient comparison. During conflict resolution, VERSUM
must determine if two SEQHASH’s are equal. Computation his-
tories are too large to transmit in their entirety, so a SEQHASH is
stored as an ADS. To efficiently test for equality, two SEQHASH’s
representing identical computation histories must have the same
root hashes. This means that a SEQHASH’s internal structure must
be deterministic for given a computation history; it cannot depend
on the order in which the SEQHASH was constructed.

Resistance to adversarial inputs. A deterministic structure
comes with a risk: there might be a set of inputs that leads to an
unbalanced internal structure, so that operations on the SEQHASH
become slow (see §10.2). If an adversary could cause operations on
a SEQHASH to take linear time by modifying the input, they could
easily cause a VERSUM server to become unavailable. Constructing
such an adversarial input must be hard.

5.2 Structure
A SEQHASH is a forest of balanced binary trees that is con-

structed over several merge rounds. At the start of construction, all
of the elements making up the sequence that the SEQHASH holds
are placed as leaves at the bottom of the SEQHASH. Then, as long
as at least one node remains, SEQHASH performs a merge round.
The input and output of each round is the current sequence of nodes
representing the roots of SEQHASH’s trees. Each round merges
several adjacent pairs of input nodes, forming new trees as input for
the next round. Each merged node contains hashes of the merged
children, much like a Merkle tree [13]. SEQHASH keeps running un-
til no more nodes remain. Figure 4 contains an example SEQHASH,
where the leaf nodes a-k are the SEQHASH’s elements.

Round 1

Round 2

Round 3

1 1 0 0 0 0 1 1 0 1
1 1 1 0
0 0
1 0

0

1 0

1

0 1

1 0

1

0
0

0

a b c d e f g i j k

l m n o p

q r

h

Figure 4: A SEQHASH constructed over the sequence of leaf
nodes a-k. The digits on top of each node represent the output
bits of the hash of each node. Dashed squares indicate roots of
trees that might be merged when another SEQHASH is concate-
nated to this SEQHASH.

Since SEQHASH produces a forest containing a variable num-
ber of trees, we summarize the entire forest at the end by hashing
together the roots of all trees, from left to right, to produce a sin-
gle final hash value. In VERSUM, all these hashes are computed
automatically by the ADS code.

5.3 Merge round
The idea behind SEQHASH’s merge round is to use a crypto-

graphic hash function to determine which nodes to merge.
The input to SEQHASH’s round function is a sequence of nodes.

The first round starts with all sequence elements as individual nodes
as input; in the case of a computation history, these nodes store
individual steps in the history.

Using the hash function, each input node is hashed to construct an
infinite sequence of bits. The round then proceeds one bit at a time,
considering the output of all nodes at the same time. SEQHASH
merges each adjacent pair of unmerged nodes when the left node
generated a 1 and the right node generated a 0 (with the exception
of nodes on the side of the sequence). The round function continues
until no two unmerged adjacent nodes exist. The tree has a determin-
istic shape because the bit sequence is deterministically generated
by each node.

Consider the first round in the example SEQHASH from Figure 4,
ignoring nodes a and k. While processing the first bit, nodes b and c
are merged, as well as i and j. Nodes d and e are not merged because
d’s first bit is not a 1, nor is e’s bit a 0. After several more bits, all
nodes except h are merged. Because h is between two merged nodes,
it will never merge during this round no matter how many bits are
considered, and so the round ends.

The nodes on the side represent a challenge because we do not
yet know their neighbor nodes; for example, node a might end up
adjacent to another node that generates 1 for the second bit of round
1, but it might also end up to a node that is merged during the first
bit of round 1. We say that in this example SEQHASH the fate of
node a is unknown, and so we keep it as its own tree in the final
SEQHASH.

During the merge round function, any nodes on the side whose
fate cannot yet be decided are marked as unknown. This happens
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to the leftmost node if it generates a 0, and to the rightmost node
if it generates a 1. Multiple nodes can be marked as unknown on
the same side during a single round. For example, nodes q and r are
both marked as unknown in round 3, as q might merge with a node
to its left based on the first bit, or it might not, and so r might merge
with q, or it might not.

5.4 SeqHash characteristics
During each round, the number of unmerged nodes is limited by

the fact that each round continues until no two adjacent nodes are
both unmerged. Consider all nodes continuing to the next round
(and thus ignoring unknown nodes). Each unmerged node must have
at least two merged nodes to its left, so the fraction of unmerged
nodes can be at most 1/3 of the total nodes. Because of that, the
total number of rounds is bounded by O(log3/2(n)).

The length of each round is limited, as we will prove formally in
Appendix A. Intuitively, two adjacent nodes will merge after 4 bits
in expectation, because the bits used during merging are indistin-
guishable from random, and 1 out of 4 possible bit combinations
results in merging. For adversarially constructed input sequences,
the number of bits consumed in a round is bounded by a constant κ

(which is the security parameter, roughly the log of the amount of at-
tacker’s computational resources), because the difficulty of coming
up with random bit sequences that do not merge for at least κ bits is
exponential in κ . The number of unknown nodes is bounded by 2κ ,
as after κ bits any remaining nodes not yet marked as unknown will
have either merged or have two merged neighbors.

One detail is the possibility of identical nodes with the same
hash value that will never merge. To solve this problem, SEQHASH
merges all identical adjacent nodes at the beginning of each round.

5.5 Achieving SeqHash’s goals
Fast lookup. By storing the total number of elements under each

node in the SEQHASH, an element can be quickly found by its index,
by first identifying the tree holding the element (by enumerating all
trees), in time O(κ logn), and then performing a simple lookup in
the identified tree, in time O(logn).

Fast concatenation. Two SEQHASH’s can be concatenated by
resolving the fate of the unknown nodes that now have known
neighbors. Concatenating two SEQHASH’s over n and m elements
takes time linear in the number of unknown nodes, or O(κ(logn+
logm)). Although an unknown node might result in another node
that must be processed, each such merge can be accounted to one of
the disappearing nodes to get the given runtime bound.

Efficient comparison. SEQHASH’s deterministic structure, in-
dependent of merge order, allows VERSUM to efficiently test the
equality of two SEQHASH’s by comparing their root hashes.

Adversary resilience. SEQHASH provides two critical security
properties. We provide the intuition behind these properties here,
and defer the complete definitions and proofs to Appendix A. First,
SEQHASH is collision-resistant; that is, an adversary cannot con-
struct two sequences whose SEQHASH values (i.e., the root hashes
of the trees in the forest) are identical. This is defined more pre-
cisely in Definition A.1 and proved in Theorem A.2. Second, an
adversary is unable to construct a sequence that makes SEQHASH
inefficient; that is, a sequence for which SEQHASH produces a forest
with more than O(κ logn) trees. This is defined more precisely in
Definition A.3 and proved in Theorem A.6.

5.6 Pseudocode
Pseudocode for SEQHASH’s round function can be found in Fig-

ure 5 and pseudocode for SEQHASH’s concatenation can be found
in Figure 6. The round function implementation keeps track of

DoRound(A, volatileL, volatileR):
n := len(A)
nextUnknownL := 0
nextUnknownR := n-1
i := 0

Initialize output arrays unknownL, center, and
unknownR.

if volatileL:
while A[nextUnknownL] == A[0]:
Add A[nextUnknownL++] to unknownL.

if volatileR:
while A[nextUnknownR] == A[n-1]:
Add A[nextUnknownR--] to unknownR.

Merge all groups of adjacent identical nodes and
add them to center.

while not all nodes are in an output:
for each adjacent pair of nodes (a,b) in A

that are not in any output:
if bit(a,i) == 1 && bit(b,i) == 0:
Add merge(a, b) to center.

for each node not in any output
with two merged neighbors:

Add the node to center.
if volatileL && bit(A[nextUnknownL],i) == 0:
Add A[nextUnknownL++] to unknownL.

if volatileR && bit(A[nextUnknownR],i) == 1:
Add A[nextUnknownR--] to unknownR.

i++
return unknownL, center, unknownR

Figure 5: SEQHASH round pseudocode.

the index of the leftmost and rightmost nodes in l and r. If their
respective sides could have neighboring nodes that might merge, in-
dicated using volatileL and volatileR, then the round function
will mark them as unknown. A side can be non-volatile if it borders
to an already-merged set of nodes in an existing SEQHASH.

The concatenation function repeatedly uses the round function
to determine which nodes to merge, taking care to reuse unknown
nodes from the existing SEQHASH’s if it exists, which means that
the side is not volatile. A special case involves the unknown nodes
of the final round; they are stored in the list of unknown nodes on
both sides.

6. VERSUM
The previous sections provide the building blocks to completely

specify VERSUM’s conflict resolution. This section describes VER-
SUM’s conflict resolution protocol and the server API required for
conflict resolution, and states a correctness theorem for VERSUM.

6.1 VerSum’s conflict resolution protocol
If two servers claim two different outcomes for a computation, the

VERSUM client uses the conflict resolution protocol to determine
which server has performed its computation incorrectly, specified in
the DetermineWrong algorithm in Figure 7.

At its core, VERSUM’s conflict resolution protocol is similar to
Quin’s conflict resolution algorithm [7]. When two servers disagree,
their computation histories must diverge at some point. The client
finds this point by performing a binary search over prefix lengths,
asking the servers to return the root hash of the SEQHASH repre-
senting the prefix of that length and seeing if they are equal. At
the end of the binary search, the client will have found the longest
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Concat(l, r):
center := []
m := SeqHash{
h: 0,
unknownL: empty array of node arrays,
unknownR: empty array of node arrays,
top: empty node array,

}

while true:
if m.h < l.h:
center = cat(l.unknownR[m.h], center)

else if m.h == l.h:
center = cat(l.top, center)

if m.h < r.h:
center = cat(center, r.unknownL[m.h])

else if m.h == r.h:
center = cat(center, r.top)

if m.h >= l.h && m.h >= r.h && center == []:
break

volatileL := (m.h >= l.h)
volatileR := (m.h >= r.h)
unknownL, center, unknownR =
DoRound(center, volatileL, volatileR)

if volatileL:
m.unknownL[m.h] = unknownL

else: // otherwise, unknownL is empty
m.unknownL[m.h] = l.unknownL[m.h]

if volatileR:
m.unknownR[m.h] = unknownR

else:
m.unknownR[m.h] = r.unknownR[m.h]

m.h += 1

m.top = cat(m.unknownL[m.h-1], m.unknownR[m.h-1])
m.h -= 1
return m

Figure 6: SEQHASH concatenation pseudocode.

prefix length for which the two servers agree and have obtained two
contradicting claims for the next prefix. The client can then ask
either server to prove the correct next prefix using DetermineNext
and determine which server committed to an incorrect prefix.

If two servers claim to have computations of different lengths,
the client performs a binary search up to the length of the smaller
computation plus one, as the servers must disagree before that point.
If the two servers agree up to the point of the shorter prefix, the client
invokes DetermineNext to determine if the shorter was wrongly
truncated or if the longer prefix was wrongly extended.

To support more than 2 servers, VERSUM can use any of the sug-
gested schemes by Canetti et al. [7]. The number of interactions for
m servers of a computation of length n becomes O(m logn), running
in time O(logm logn) by arranging the servers in a tournament tree.

6.2 Reliance on SeqHash uniqueness
A malicious server could store a correct computation history in a

badly constructed SEQHASH (by performing merge rounds incor-
rectly). It is crucial that VERSUM treats such a badly constructed
SEQHASH as an incorrect computation: to make progress, VERSUM
must be able to find at least one server that made a mistake at the
end of the binary search. If an invalidly shaped SEQHASH holding
the correct computation would be accepted by the client, then both
servers would be correct, and the binary search would have been
pointless.

DetermineWrong(serverA, serverB):
n := min(serverA.getLength(),

serverB.getLength()) + 1
agreed := prefix of length 1 starting

with the desired computation
claimA := serverA.getPrefix(n)
claimB := serverB.getPrefix(n)

// perform a binary search
while len(agreed) + 1 < n:
mid := (len(agreed) + n)) / 2
a := serverA.getPrefix(mid)
b := serverB.getPrefix(mid)
if a == b:
agreed = a

else:
n = mid
claimA = a
claimB = b

next :=
serverA.proofDetermineNext(agreed)

if next == claimA:
return B

if next == claimB:
return A

return both

Figure 7: The algorithm to determine which of two servers has
an incorrect computation history. If at any point during the
conversation one server stops responding, or returns an invalid
response (e.g. to DetermineNext), that server is considered
wrong.

6.3 Handling uncooperative servers
A malicious server could try to break the conflict resolution proto-

col in several ways: a server could try to make the binary search take
too long, a server could stop responding, or a server could provide
invalid answers to queries. The client handles all these problems
by checking that all answers are correctly formatted with reason-
able size limits. If a server ever gives a badly formatted answer, or
an invalid proof, or fails to reply, the client assumes that server is
wrong.

6.4 Server API
To support VERSUM’s conflict resolution, a VERSUM server

supports several functions:

• getLength(): Return the length of the computation history.

• getPrefix(length): Return a prefix of the computation his-
tory of the requested length, represented as a SEQHASH.

• proofDetermineNext(prefix): Given a prefix of a history
as SEQHASH, run the DetermineNext algorithm on the prefix
and return the next prefix. Since prefix is an ADS, the server
returns a proof of a valid DetermineNext computation.

• proofGetResult(history): Given a complete history as SEQ-
HASH, return the output of the complete computation (as re-
turned by the last step of the history). Since history is an ADS,
the server returns a proof that this is indeed the last element in
history.

All operations besides getPrefix have a straightforward imple-
mentation using the underlying SEQHASH. The proofGetResult
and proofDetermineNext calls depend on SEQHASH’s ability to
perform lookups in O(κ logn).
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SH 1..1 SH 2..2 SH 3..3

SH 2..3

SH 1..3

SH 1..7

SH 1..16

SH 4..7

SH 8..16

Figure 8: The partial SEQHASH’s stored in a balanced binary
tree on a VERSUM server to quickly answer getPrefix queries.
Each node stores the concatenation of the SEQHASH’s of its
children so that a server only needs to concatenate O(logn)
SEQHASH’s to respond to any query.

For getPrefix the server must construct a SEQHASH for any
requested length. To do this efficiently, the server stores partially
constructed SEQHASH’s for many different subsequences of the
computation history in a balanced binary tree over the computation
history, as shown in Figure 8. The server constructs this binary
tree when it performs the computation. Each node in the tree stores
the concatenation of the SEQHASH’s of its two children, so that
a SEQHASH covering any prefix can be constructed in O(logn)
SEQHASH concatenations. For performance, getPrefix depends
on SEQHASH’s ability to concatenate two arbitrary SEQHASH’s in
time O(κ(logn+ logm)). For a computation history of length n, a
getPrefix call takes O(κ log2 n) time for O(logn) concatenations.

6.5 Security
To formally state VERSUM’s security properties, we have two

theorems guaranteeing VERSUM’s correctness. First, an honest
server will always be able to quickly respond to queries, even in
the case of a computation that contains adversarially constructed
inputs influencing the underlying SEQHASH. This follows from
SEQHASH being adversary-proof. Second, if a VERSUM client can
reach at least one honest server, it will learn the correct result of a
computation with high probability. This follows from the correctness
of Miller et al.’s approach [14].

First, to ensure that a VERSUM server can quickly respond to
all queries, we must make sure the computation is suitable for
VERSUM:

DEFINITION 6.1 (SUITABLE COMPUTATION). A computation
for VERSUM is suitable if it is a purely functional, side-effect-free
computation with short functions. That is, there exists a small con-
stant c such that, already knowing the result of nested functions,
each function can be computed in c steps.

A suitable computation has small DetermineNext proofs, as each
function itself will call no more than c functions and access no more
than c ADS nodes,

Then, because SEQHASH is efficient, an efficient server exists, as
described in §6.4:

THEOREM 6.2. After performing an initial suitable computation
of n steps, an honest VERSUM server can respond to any query in
O(κ logn(logn+ c)).

PROOF. By SEQHASH’s security proof, all SEQHASH operations
are efficient, even under adversarial input. getLength, getPrefix,
and proofGetResult all have efficient implementations using SEQ-
HASH, running in time O(κ log2 n) or better.

As the computation is suitable, all function calls in the computa-
tion history have a bound number of calls, and so determineNext
runs in time O(cκ logn) to perform c SEQHASH lookups, and then
takes c steps to run the function itself.

Combining both runtimes gives the desired bound.

Building on an efficient and honest server, we can prove VERSUM
correct:

THEOREM 6.3. A single instance of DetermineWrong will de-
clare an honest server wrong with negligible probability.

PROOF. A proof by contradiction. Suppose a VERSUM client
has incorrectly kicked out an honest server.

The honest server cannot have been labeled as an uncooperative
server: it is honest, reachable, and has an efficient implementation
for all API calls.

Instead, the other server must have constructed a DetermineNext
proof of a next computation history different from the honest server’s.
However, the honest server’s claim is, by definition, the result of
an invocation of DetermineNext. This means that somehow, the
other server constructed an invalid DetermineNext proof. This is a
violation of the underlying ADS security property, and can happen
only with negligible probability.

Our final theorem states that VERSUM is both correct and efficient
for a pool of servers:

THEOREM 6.4. A VERSUM client that can reach at least one
honest server out of m servers, will, with high probability, learn
the correct result of a computation in O(m logn) interactions with
O(mcκ log(n)) local work.

PROOF. By repeatedly refereeing disagreeing servers, a client
will eventually learn the computation’s result with high probability.

Each such interaction requires two getLength calls, O(logn)
getPrefix calls, and a single proofDetermineNext call, for a
total of O(m logn) interactions.

Verifying the m determineNext proofs will take time O(mcκ logn),
to verify the O(mc) lookups in the computation history, and run m
functions of no more than c steps each.

This correctness statement provides the same security, but not
the same runtime, as Canetti et al.’s RDoC [7], because RDoC does
not assume precomputation. A single invocation of the conflict
resolution protocol in RDoC can take as long as the entire com-
putation, while VERSUM’s conflict resolution protocol takes time
(poly-)logarithmic in the length of the computation.

7. BITCOIN
Our main use-case for VERSUM is processing the Bitcoin block-

chain. This section describes how and why we used VERSUM to
process the Bitcoin blockchain.

7.1 Why use VerSum for Bitcoin?
VERSUM lets lightweight clients securely outsource complex

computations. The main use case for VERSUM in this paper is
to support secure, lightweight Bitcoin clients. Users may need to
perform many kinds of computations over the Bitcoin blockchain,
such as:
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• Determining the current balance held by a single Bitcoin account.

• Determining all (recent) incoming transactions to an account.

• Determining all (recent) outgoing transactions from an account.

• Determining all (recent) outgoing transactions from an account
over a threshold amount.

• Various statistics, such as daily transaction volume, transaction
size, etc.

One solution is to perform these computations locally on the
user’s device. Unfortunately, the Bitcoin blockchain is too large to
reasonably store on mobile phones, and most PC users are unwilling
to spend several hours downloading and processing the blockchain.

Instead of downloading the entire log, Bitcoin users currently out-
source their computations to various parties on the Internet. These
service providers tell Bitcoin users their balance, list various trans-
actions, provide statistics, and so forth. Unfortunately, this approach
has a significant security problem: users blindly trust the results sent
to them from the server, and a malicious server can manipulate this
financial information.

VERSUM enables the best of both worlds: it allows clients to
verify the results of arbitrary computations over the blockchain,
without requiring them to either blindly trust some server, or to
download the blockchain and perform the computation themselves.

Various lightweight Bitcoin clients currently exist. They trust a
single server to provide them with correct information on the state
of the Blockchain. The lightweight Electrum client [1] now requires
balance information to come from an authenticated data structure
(ADS). However, the identity of this ADS itself is not verified, and
so an attacker can simply tell the client to trust an incorrect ADS.

An alternative to VERSUM might be to modify the Bitcoin proto-
col. For example, the Bitcoin community has proposed modifying
the Bitcoin blockchain to store the set of unspent transactions out-
puts as an ADS, similar to the one used by Electrum. Under this
proposal, lightweight clients need not process the entire blockchain,
and can instead ask an untrusted third-party to perform a lookup
in the ADS. If adopted, this will help a lightweight client deter-
mine if a transaction has been spent or not. However, this ADS is
specific to one particular computation. Every other computation
would require changing the Bitcoin protocol again, which not only
increases the size of the blockchain but also requires buy-in to each
such computation from the entire Bitcoin community.

VERSUM needs no modifications of the underlying log to verify
any outsourced computation. If lightweight clients were to switch
to VERSUM, they would be secure immediately without Bitcoin
protocol changes, and with more flexibility.

7.2 Calculating unspent transactions
To illustrate the power of VERSUM’s verifiable computations,

consider the Bitcoin blockchain. Bitcoin tracks money as unspent
transaction outputs. Each transaction spends several previously
unspent transaction outputs, and makes several new transaction
outputs available. Transactions are grouped into blocks, and the
entire Bitcoin blockchain consists of a singly linked list of these
blocks. The Bitcoin protocol ensures that all participants agree on
the same blockchain [15].

A developer can use VERSUM to summarize the Bitcoin log into
a set of unspent transaction outputs, as shown in Figure 9. The de-
veloper summarizes the Bitcoin log using the recursive Summarize
function. Since the blockchain is a linked list, Summarize first
recursively calls itself to summarize the entire blockchain before the
current block. It then processes all transactions in the current block
using ProcessTxn, marking their inputs as spent in SpendOutput
and making their outputs available.

Summarize(block):
if block is nil:
return empty

balances := Summarize(block.previous)
for txn in block.transactions:
balances = ProcessTxn(balances, txn)

return balances

ProcessTxn(balances, txn):
for output in txn.inputs:
balances = SpendOutput(balances, output)

balances = balances.makeAvailable(txn)
return balances

SpendOutput(balances, previousOutput):
balances = balances.spend(previousOutput)
return balances

Figure 9: A program to summarize the Bitcoin blockchain into
a set of balances for each account.

This example demonstrates two important properties of VERSUM
computations. First, all computations must be purely functional so
that VERSUM can track the input and output of each function. In
this example, the state of the blockchain is stored in the immutable
dictionary balances, which in our prototype implementation is an
authenticated binary Patricia tree. The input, the blockchain itself, is
also an ADS; clients can learn the current head of the blockchain by
participating as a lightweight node in the Bitcoin network. Because
the computation is purely functional, previous calls to Summarize
can be reused in new computations when a new block is added to
the Blockchain.

Second, all functions should make relatively few calls, to keep
DetermineNext proofs small, while the total runtime of a function
(including recursive calls) can be very long. In our example, a
Summarize can take a long time to compute on the server as it
recursively calls itself, but a client will never have to perform that
nested call as the result will already be known.

7.3 Intermediate output
Once the client has determined the set of unspent transaction out-

puts in an ADS, it can then ask any untrusted server to prove, in that
given set, whether a transaction is spent or not. For our evaluation
of the unspent transaction output computation, we implemented a
function proofTxnSpent which checks if a transaction is spent.

From the point of view of a single client, having to first obtain
the root hash of the output ADS and to then query it to obtain
the ultimate result seems less efficient than asking the server to
compute the desired result directly. However, this intermediate
output ADS allows VERSUM to share the same computation among
many clients, and allows for compact proofs of arbitrary queries on
this intermediate ADS.

8. IMPLEMENTATION
We built a prototype of VERSUM in Go, as well as several appli-

cations that compute over the Bitcoin blockchain, in a style similar
to the code from Figure 9. The line count for each VERSUM compo-
nent is shown in Figure 10. The implementation reuses the existing
“btcwire” (github.com/conformal/btcwire) Go library to parse and
store Bitcoin’s internal datastructures, with a small wrapper to inte-
grate with VERSUM’s authenticated data structure support.

To handle large authenticated data structures, our prototype trans-
parently pages ADS nodes to and from disk.
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Component Line count

authenticated data structures core 713
SEQHASH 215
computation proofs, DetermineNext 524
authenticated map 441
Bitcoin wrapper 580

Figure 10: Major VERSUM components.

Computation Line count

Unspent Bitcoin transaction outputs 123
Incoming Bitcoin transactions 90
Name registration and transfer 119

Figure 11: Different VERSUM computations.

9. EVALUATION
To evaluate VERSUM we wanted to measure its practicality by

answering the following questions:

1. Can VERSUM support a variety of computations? (§9.1)

2. Can VERSUM support many clients? (§9.3)

3. How much bandwidth does a VERSUM client need? (§9.4)

4. Can VERSUM quickly update its computation when a log grows?
(§9.5)

5. Can VERSUM be used to summarize a large log? (§9.6)

9.1 Computations
To evaluate the utility and versatility of VERSUM we imple-

mented several computations in VERSUM. Figure 11 lists these
computations along with how many lines of code each implemen-
tation consists of. Using VERSUM, implementing new verifiable
computations is easy, and can be done in about a hundred lines of
code.

Besides the unspent Bitcoin transaction outputs example from §7,
we implemented two extra computations, as follows.

The first, a list of incoming Bitcoin transactions for each Bitcoin
account, stores all incoming transactions for each account in a linked
list held in a map of accounts.

The second computation, a name registration and transfer scheme,
uses Bitcoin in an unconventional way. The Bitcoin blockchain
allows transactions to include 40 bytes of arbitrary data, which the
name registration program uses to store two types of commands:
registering a name to a public key, or transferring a name from
one public key to another key. The 40 bytes hold a 32-byte hash
of a name, along with an 8 byte-tag to indicate name registration
transactions. The computation tracks registrations, and ensures that
no name gets registered twice and that transfers include a signature
from the current owner. This computation implements a subset of
Namecoin on top of the Bitcoin blockchain, showing that VERSUM
can implement interesting computations and build on existing public
logs to support new features.

9.2 Experimental setup
To evaluate the performance of VERSUM, we tested our imple-

mentation of the unspent Bitcoin transaction outputs calculation,
and ran experiments using the following setup:

Blockchain statistics. We used a snapshot from January 2014 of
the Bitcoin blockchain to perform our experiments. This snapshot,
used to bootstrap new Bitcoin nodes, contains 14 GB of Bitcoin

Request Warm cache Cold cache

proofTxnSpent 4000 op/s 76 op/s
getPrefix 87 op/s 9 op/s
proofDetermineNext 55 op/s 6 op/s

Figure 12: Throughput in operations per second for client re-
quests with warm and a cold disk cache.

blocks, storing 279,000 blocks holding approximately 30 million
transactions.

Server. The VERSUM server ran as single-threaded process on
an Intel E7-8870 2.4 GHz processor, with a single 1TB HDD as
permanent storage and 256 GB of RAM. Although the machine has
a large amount of memory, the computation was configured to use
no more than 4 GB of RAM, to decrease pressure on Go’s garbage
collector. The remaining RAM was used as a buffer cache for the
slow HDD.

9.3 Server performance
To understand whether VERSUM can support many clients, we

measured the throughput that a VERSUM server can achieve. In
particular, we measured the throughput of three different types of
requests that the VERSUM server supports: queries on the output
ADS of the Bitcoin computation (proofTxnSpent), prefixes re-
quested during the conflict resolution protocol (getPrefix), and
DetermineNext proofs requested at the end of the conflict resolu-
tion protocol (proofDetermineNext). Because a large part of the
server time is spent paging in ADS nodes from disk, we measured
the performance of the queries with both warm and cold OS disk
caches. The results are shown in Figure 12.

A single core supports thousands of ADS queries per second on
the output of the Bitcoin computation, with a warm disk cache. This
suggests that VERSUM should be able to support a large number of
clients querying the outputs of their computations.
getPrefix and proofDetermineNext are significantly slower

because both of them must construct the SEQHASH for the requested
prefix. This is also reflected in the cold cache performance numbers,
as all the partial SEQHASH’s must be loaded from disk.

Both of these functions are used in the conflict resolution protocol,
which consists of two phases: first, a binary search over prefixes us-
ing getPrefix, and then verifying a prefix with proofDetermine-
Next. The binary search takes time logarithmic in getLength. The
client enforces an upper bound on getLength so that the conflict
resolution protocol never takes more than 60 binary search steps.
This means that the end-to-end runtime of the conflict resolution
protocol is less than a second for two servers with a warm cache.

We expect that conflict resolution protocol invocations should be
relatively rare, as they should occur only after a server is determined
to have given a wrong result. Once a client has a proof that a server
misbehaved, the client can publish the proof to other servers and
clients, so that the server is not used again. As a result, we expect
that VERSUM’s performance is sufficient to support a large number
of clients, even if some of them do invoke conflict resolution.

9.4 Bandwidth usage
To support lightweight clients, values returned to clients cannot

be too big; Figure 13 lists the sizes of return values for several
operations. We measured the size of query proofs for (proofTxn-
Spent) by picking 1000 random unspent transactions and invoking
proofTxnSpent on them. No proof was bigger than 4267 bytes.
Such small proof sizes can be explained by noting that each query in
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Operation Size of return value

proofTxnSpent < 4267 bytes
getPrefix 32 bytes
proofDetermineNext 10 KB – 600 KB

Figure 13: Sizes of return values

the authenticated map, holding the output of the computation over
the blockchain, must access only a logarithmic number of nodes.

The size of the value returned by getPrefix is 32 bytes in size;
a single hash representing the root of the partial SEQHASH holding
the prefix.

The value of proofDetermineNext varied from less than 10 KB
to a maximum of 600 KB. Because they varied more wildly, we
sampled 10000 random prefix lengths, as well as 20 random series
of 5000 consecutive prefixes. This roughly corresponds with the
expected maximum proof size. A Summarize proof on a block
with the maximum number of transactions, 6000, will contain the
transaction hash, as well as a call and return record for each block,
totaling around 70 bytes per block. With additional overhead from
lookups in the SEQHASH to find these entries, 600 KB is around the
theoretical maximum proof size.

9.5 Incremental computation updates
For VERSUM to be practical a server must be able to quickly

incorporate changes to the underlying log. We measured the av-
erage time to include each of the last 2000 blocks in the Bitcoin
blockchain (around 20 days worth of blocks). Adding a block took
approximately 1.12 seconds per block, including paging data in and
out of memory. Over the last 2000 blocks, the average block size
was 0.17 MB, and the theoretical maximum block size is 1 MB, so
even the largest possible blocks can be included in seconds. The Bit-
coin blockchain grows one block approximately every 10 minutes,
which VERSUM can incorporate in a fraction of that time.

9.6 Initializing VerSum
To bootstrap our VERSUM server we summarized all 14 GB of

the Bitcoin blockchain. This entire computation took 25 hours,
and the final computation history contains 195 million steps. The
final computation history serialized to disk, including all arguments
and return values, measures approximately 365 GB. The growth
from 14 GB to 365 GB happens because VERSUM must store all
intermediate results.

Processing the complete Bitcoin log is expensive even without
VERSUM. For example, developers of a Bitcoin client in Go report
that the time for processing 9.1 GB (250,000 blocks) of the Bitcoin
log took 4.5 hours.1 VERSUM processes a bigger log (14 GB)
and does it in a verifiable way, which takes 25 hours in total. The
VERSUM prototype is not optimized for the initial computation, but
these numbers demonstrate VERSUM is practical.

10. RELATED WORK

10.1 Outsourcing computation
Various schemes have been proposed to outsource computation

not in the RDoC model. AVM [11] provides auditable virtual ma-
chines to clients. However, these virtual machines do not guarantee
correctness; instead, their mistakes can be proven to others. Pio-
neer [19] provides timing proofs of correctness, but these proofs
cannot be reused for multiple clients.
1https://blog.conformal.com/deslugging-in-go-with-pprof-btcd/

A number of systems have required servers to produce an eff-
iciently checkable cryptographic proof that the computation was
performed correctly [3, 18]. Pantry [6] has shown that this approach
can be coupled with authenticated data structures to verify compu-
tations with state. While not relying on any trusted servers, these
systems suffer from high server-side computation overheads, mak-
ing it impractical to run computations over a large input such as the
Bitcoin blockchain.

In cases where the system needs to perform only a limited class
of computations, specialized schemes have been designed, for ex-
ample to support range queries over streaming data [17]. However,
such systems cannot support arbitrary computations; in contrast,
VERSUM can outsource and verify the results of any computation
expressed as a functional program.

Finally, some systems rely on a piece of trusted server hardware,
such as a TPM [21], to generate an attestation that the computation
was performed correctly. Although efficient, this plan requires
trusting the trusted hardware manufacturer. If any trusted hardware
device or the root cryptographic key is compromised, it can produce
incorrect attestations, and can trick the client into accepting an
incorrect computation result.

10.2 Other data structures
SEQHASH used as an ADS is the first data structure for holding

sequences supporting both fast comparison and fast concatenation.
Although there are various other candidate schemes, they do not
provide the same functionality as SEQHASH:

Merkle trees. Standard Merkle trees [13] have a rigid shape, and
thus support fast comparison. However, because of that rigid shape,
Merkle trees are not efficiently concatenable: for example, a Merkle
tree of the sequence {1,2, . . . ,2n} always combines 2i+ 1 on the
left with 2i+2 on the right to form an intermediate node. When we
prepend the value 0 to this sequence, all internal nodes change, as
now 2i on the left is always paired with 2i+1 on the right.

Balanced binary trees. Balanced binary trees, as implemented
as an ADS by Miller et al. [14], are efficiently concatenable. How-
ever, a single sequence can be stored in many distinct balanced
binary trees (by performing simple tree rotations). This means that
two different trees are not efficiently comparable: deciding if two
trees contain the same elements might require inspecting the entire
tree, since the hash at the top of the tree depends on the internal
structure of the tree. Thus, balanced binary trees are useless for
testing sequence equality.

The shape of a balanced binary tree is determined by the order
in which the sequence elements were inserted into or concatenated
onto the tree. In the context of VERSUM, if balanced binary trees
were used instead of SEQHASH, the tree representing a prefix might
have a different shape depending on if it was formed during conflict
resolution (where prefixes are extended one entry at a time) or
during computation (where large sequences of entries get reused
and concatenated all at ones).

Uniquely represented data structures. Since SEQHASH pro-
vides efficient equality comparison, it can be thought of as a uniquely
represented data structure, or a strongly history-independent data
structure [16]. Such data structures have been used to perform O(1)
comparisons, such as between dictionaries [8], hash tables [5], or
B-Treaps [10]. Similar data structures have also been used to en-
force append-only properties on logs [9, 22], including the Bitcoin
blockchain itself [15]. Unlike SEQHASH, none of these data struc-
tures support O(logn) concatenation of sequences in the face of
adversaries choosing the input data.

11



For example, in the case of a treap, an adversary could construct
a sequence of steps with monotonically increasing priority, leading
to an imbalanced tree.

11. CONCLUSION
This paper introduced VERSUM, a system that allows lightweight

clients to outsource computations over large, frequently changing
public logs to a collection of servers. As long as one of the servers
is not compromised, VERSUM will return the correct result to the
client. VERSUM achieves its efficiency using three key ideas: ex-
press the computations as functional programs, record the evaluation
trace of programs in a computation history that helps clients deter-
mine which server is honest, and summarize computation histories
using the SEQHASH authenticated data structure. Experiments with
the Bitcoin log demonstrate that VERSUM is practical. We believe
that VERSUM can also enable lightweight clients to perform ver-
ifiable name lookup in Namecoin and to validate certificates for
Certificate Transparency. As more publicly available logs become
available, we expect the number of use cases for VERSUM to grow.

The VERSUM prototype is publicly available at https://github.
com/jellevandenhooff/versum.
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APPENDIX
A. PROOF OF SECURITY FOR SEQHASH

To precisely state and prove SEQHASH’s security properties,
we will use standard cryptographic notation: κ will be a security
parameter, negl(·) is a negligible function, a← B denotes sampling
a randomly from a uniform distribution over B, and a← Alg()
denotes running a probabilistic algorithm Alg to produce result a.
We use Alg( f (·)) to represent algorithm Alg running with query
access to function f (·).

Formalizing SEQHASH’s security properties requires addressing
one technicality: because SEQHASH uses a public hash function,
it is difficult to bound the amount of pre-computation done by an
adversary in constructing some adversarial algorithm Adv. In prac-
tice, this is not a problem, because we assume our hash function is
indifferentiable from a random oracle [4] and assume the adversary
has been running from the time SEQHASH was designed. However,
to capture the notion of efficiency in our definitions, we temporarily
assume that SEQHASH uses a keyed PRF P instead of a pseudo-
random oracle, and we give the adversary’s algorithm query access
to this keyed PRF.

First, we define and prove collision-resistance.

DEFINITION A.1 (COLLISION-RESISTANCE). F is collision-
resistant if, for every probabilistic polynomial-time adversary Adv,
for every sufficiently large security parameter κ ,

Pr[k←{0,1}κ ;
(a,b)← Adv(Pk(·));
F(k,a) = F(k,b) and a ̸= b]≤ negl(κ)

THEOREM A.2. SEQHASH is collision-resistant, as defined in
Definition A.1.

PROOF. Suppose that there exists an adversary Adv that can
construct a pair of sequences a and b with identical SEQHASH
values with non-negligible probability. We will use Adv to construct
a reduction to break the security of the Merkle tree used for each
tree in SEQHASH’s forest.

This reduction works as follows. Invoke Adv to obtain a and b.
Pick the first tree hash h in SEQHASH(a) = SEQHASH(b) where
the nodes corresponding to h in a and b are different. Such a tree
hash h must exist because a ̸= b. Output the corresponding nodes
from a and b. The resulting Merkle tree nodes are different but lead
to the same Merkle root hash.

This reduction works with non-negligible probability, but by
assumption Merkle trees cannot be broken with non-negligible prob-
ability. Thus, our supposition was wrong, and such an adversary
Adv does not exist.

Second, we define and prove efficiency.

DEFINITION A.3. A function F that maps a key and a sequence
to a forest of trees is efficient if, for every probabilistic polynomial-
time adversary Adv, for every sufficiently large security parameter
κ ,

Pr[k←{0,1}κ ;
seq← Adv(Pk(·));
NumTrees(F(k,seq))≥ 2κ logn]≤ negl(κ)

where NumTrees(·) counts the number of trees in a forest.

Before we can prove that SEQHASH is efficient, we first prove a
lemma about the maximum number of bits that has to be processed
in a SEQHASH round until n different nodes merge. Let P be the
keyed PRF used by SEQHASH, which produces an infinite stream of

bits. Let m(k,a,b) be the number of bits until nodes a and b merge
in a given round; that is, the number of bits until Pk(a) has a 1 bit
and Pk(b) has a 0 bit.

LEMMA A.4 (MERGE PROBABILITY). For every n, for every
sufficiently large security parameter κ , for every p which is polyno-
mial in n,

Pr[k←{0,1}κ ;
max({m(k,a,b) |a,b ∈ {1, . . . , p} and

a ̸= b})≥ κ]≤ negl(κ).

PROOF. For every distinct a and b, Pr[m(k,a,b) ≥ κ] = ( 3
4 )

κ ,
since Pk(a) and Pk(b) are indistinguishable from random, and ev-
ery bit position causes a and b to merge with probability 1

4 . The
probability that at least one of the p(p− 1) pairs (a,b) satisfies
m(k,a,b)≥ κ is at most p2 · ( 3

4 )
κ . This is negl(κ).

Now we will prove a lemma about the maximum length of a
SEQHASH round.

LEMMA A.5 (SEQHASH ROUND LENGTH). For every proba-
bilistic polynomial-time adversary Adv, for every sufficiently large
security parameter κ ,

Pr[k←{0,1}κ ;
seq← Adv(Pk(·));
MaxRound(k,seq)≥ κ]≤ negl(κ)

where MaxRound(k,seq) is the maximum number of bits consumed
in any round while computing SEQHASH(k,seq).

PROOF. Assume there exists such an adversary Adv that suc-
ceeds with non-negligible probability. Since we assume that P is
indifferentiable from a random oracle, let p be the number of times
that Adv invokes Pk(·). Since Adv is polynomial-time, p is polyno-
mial in 1κ . Without loss of generality, include in p all invocations
of Pk(·) needed to compute SEQHASH on the sequence produced by
Adv, even if Adv did not make such queries. Because P is a PRF,
the exact arguments on which Adv(k) queries P are irrelevant, so
without loss of generality, assume they are 1,2, . . . , p.

Since Adv produces seq with MaxRound(k,seq) ≥ κ , it must
be that SEQHASH(k,seq) runs into some pair of distinct a,b ∈
{1, . . . , p} such that m(k,a,b) ≥ κ . But according to Lemma A.4,
the probability that this would be true for any such pair a,b is negligi-
ble. Thus, Adv cannot succeed with non-negligible probability.

Now we can prove the theorem about efficiency.

THEOREM A.6. SEQHASH is efficient, as defined in Defini-
tion A.3.

PROOF. Suppose there exists an adversary Adv that, given argu-
ment k, constructs a sequence seq such that

NumTrees(SEQHASH(k,seq))≥ 2κ logn,

with non-negligible probability. By construction, SEQHASH runs for
O(logn) rounds, so there must be some round that produces at least
2κ trees. The number of trees produced in a round is bounded by
the number of unmerged nodes, which is bounded by 2× the length
of the round (number of bits consumed). But by Lemma A.5, no
adversary can construct a sequence that causes a round to consume
at least κ bits, with non-negligible probability. So such an adversary
Adv cannot exist.
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