
ar
X

iv
:1

80
9.

09
55

0v
1

 [
cs

.D
C

]
 2

3
Se

p
20

18

A Revised and Verified Proof of the Scalable Commutativity Rule

Lillian Tsai,† Eddie Kohler,⋆ M. Frans Kaashoek,† and Nickolai Zeldovich†

† MIT CSAIL ⋆ Harvard University

1 Introduction

This paper explains a flaw in the published proof of the Scal-

able Commutativity Rule (SCR) [1], presents a revised and

formally verified proof of the SCR in the Coq proof assistant,

and discusses the insights and open questions raised from our

experience proving the SCR.

2 The Scalable Commutativity Rule

In order to explore the connection between commutativity

and scalability in practical systems, Clements et al. [1] de-

fined a new type of commutativity called SIM commuta-

tivity,1 a property that can hold of certain interface spec-

ifications. This was used to state and prove the Scalable

Commutativity Rule (SCR), which claims that every SIM-

commutative interface has a conflict-free implementation—

that is, on modern machines, a scalable implementation.

Even if an interface is commutative only in a restricted con-

text, there exists an implementation that scales in that con-

text.

The rest of this section summarizes SIM commutativity

and the precise statement of the rule, and describes the pub-

lished proof of the rule.

2.1 Specifications

Specifications are represented using actions, where each ac-

tion is either an invocation (representing an operation call

with arguments) or a response (representing a return value).

Each invocation is made by a specific thread, and the corre-

sponding response is returned to the same thread. The divi-

sion into invocations and responses models blocking inter-

faces and concurrent operations [2]. Invocations are written

as “f (args)α” and responses are written as “retvalα,” where

overbars mark responses and Greek letters represent thread

IDs.
A particular execution of a system is a history or trace,

which is just a sequence of actions. For example,

H = [Aα, Bγ , Cβ , Aα, Cβ , Bγ , Dα, Dα, Eβ , Fγ , Gα, Eβ , Gα, Fγ]

consists of seven invocations and seven corresponding re-

sponses across three different threads. In a well-formed

history, each thread’s actions alternate invocations and re-

sponses, so each thread has at most one outstanding invoca-

tion at any point. H above is well-formed; for instance, in

the thread-restricted subhistory H|α =[Aα, Aα, Dα, Dα, Gα,

Gα], which selects α’s actions from H, invocations and re-

sponses alternate as required.

1SIM stands for State-dependent, Interface-based, and Monotonic.

A specification models an interface’s behavior as a prefix-

closed set of well-formed histories. A system execution is

“correct” according to the specification if its trace is included

in the specification. For instance, if S corresponded to the

POSIX specification, then [getpidα, 92α] ∈ S (a process

may have PID 92) but [getpidα, ENOENTα] 6∈ S (the get-

pid() system call may not return that error). A specification

constrains both invocations and responses: [NtAddAtomα]
is not in the POSIX specification because NtAddAtom is

not a POSIX system call.

An implementation is an abstract machine that takes in-

vocations and calculates responses. The original proof of

the SCR by Clements et al. [1] (also presented in Sec-

tion 2.4) uses a class of machines on which conflict-freedom

is defined; a good analogy is a Turing-type machine with a

random-access tape, where conflict-freedom follows if the

machine’s operations on behalf of different threads access

disjoint portions of the tape.

An implementation M exhibits a history H if, when fed

H’s invocations at the appropriate times, M can produce H’s

responses (so that its external behavior equals H overall). An

implementation M is correct for a specification S if M’s re-

sponses always obey the specification. This means that every

history exhibited by M is either in S or contains some in-

valid invocation.

2.2 Commutativity

SIM commutativity aims to capture state dependence at the

interface level. State dependence means SIM commutativity

must capture when operations commute in some states, even

if those same operations do not commute in other states. SIM

commutativity captures this contextually, without reference

to any particular implementation’s state: to reason about pos-

sible implementations, SIM commutativity captures the scal-

ability inherent in the interface itself. This in turn makes it

possible to use the SCR early in software development, dur-

ing interface design.

Commutativity states that actions may be reordered with-

out affecting eventual results. A history H′ is a reorder-

ing of H when H|t = H′|t for every thread t. This al-

lows actions to be reordered across threads, but not within

them. For example, if H = [Aα, Bβ , AαCα, Bβ , Cα],
then [Bβ , Bβ , Aα, Aα, Cα, Cα] is a reordering of H, but

[Bβ , Cα, Bβ , Cα, Aα, Aα] is not, since it doesn’t respect the

order of actions in H|α.

Now, consider a history H = X ++ Y (where ++ concate-

nates action sequences). Y SI-commutes in H when given any

1

http://arxiv.org/abs/1809.09550v1

reordering Y ′ of Y, and any action sequence Z,

X ++ Y ++ Z ∈ S if and only if X ++ Y ′ ++ Z ∈ S .

This definition captures state dependence at the interface

level. The action sequence X puts the system into a specific

state, without specifying a representation of that state (which

would depend on an implementation). Switching regions Y

and Y ′ requires that the exact responses in Y remain valid ac-

cording to the specification even if Y is reordered. The pres-

ence of region Z in both histories requires that reorderings of

actions in region Y cannot be distinguished by future opera-

tions, which is an interface-based way of saying that Y and

Y ′ leave the system in the same state.

Unfortunately, SI commutativity is not sufficient to prove

the SCR. To avoid certain degenerate cases,2 the definition

of commutativity must be strengthened to be monotonic (the

M in SIM). An action sequence Y SIM-commutes in a his-

tory H = X ++ Y when for any prefix P of any reordering

of Y (including P = Y), P SI-commutes in X ++ P. Equiv-

alently, Y SIM-commutes in H when, given any prefix P of

any reordering of Y, any reordering P′ of P, and any action

sequence Z,

X ++ P ++ Z ∈ S if and only if X ++ P′ ++ Z ∈ S .

Like SI commutativity, SIM commutativity captures state

dependence and interface basis. Unlike SI commutativity,

SIM commutativity excludes cases where the commutativ-

ity of a region changes depending on future operations. The

SCR relies on SIM commutativity.

2.3 Rule

The Scalable Commutativity Rule formally states the follow-

ing:

Assume an interface specification S that has a

correct implementation, and a history H = X ++ Y

exhibited by that implementation. Then whenever

Y SIM-commutes in H, there exists a correct im-

plementation of S whose steps in Y are conflict-

free. Since, given reasonable workload assump-

tions, conflict-free operations empirically scale on

modern multicore hardware, this implementation

is scalable in Y.

2.4 Proof

The published proof of the SCR proceeds by construction.

We briefly describe how the proof proceeds (eliding certain

details about interruptibility and thread switches).

2Consider an undefinedbehavior invocation that allows later invoca-

tions to return any value whatsoever. This resembles the specification

governing C compilers. Many sequences containing undefinedbehavior

SI-commute, even if the same sequences without undefinedbehavior re-

quire a non-scalable implementation; for instance, groups of sequentially-

consistent set operations don’t SI-commute, since future gets must return

the latest value, but sets plus undefinedbehavior do SI-commute, since fu-

ture gets are unconstrained. Most practical implementations cannot see the

future, and so cannot choose unsafe scalable designs in the hope that unde-

finedbehavior will eventually occur.

1 mrule(s, i) ≡
2 t ← thread(i)
3 If head(s.h[t]) = COMMUTE: // enter conflict-free mode

4 s.commute[t]← TRUE; s.h[t]← tail(s.h[t])
5 If head(s.h[t]) = i:

6 s.h[t].pop()
7 If head(s.h[t]) is a response and thread(head(s.h[t])) = t:

8 r ← head(s.h[t]) // replay s.h

9 else if s.h[t] 6= EMULATE: // H complete/input diverged

10 H′ ← a witness consistent with s.h[t]
11 For each invocation x in H′:

12 〈s.refstate, _, _〉 ← M(s.refstate, x)
13 s.h[u]← EMULATE for each thread u

14 If s.h[t] = EMULATE:

15 〈s.refstate, r, _〉 ← M(s.refstate, i)
16 else if s.commute[t]: // conflict-free mode

17 s.h[t]← tail(s.h[t])
18 else: // replay mode

19 s.h[u]← tail(s.h[u]) for each thread u

20 Return 〈s, r〉

Figure 1: Constructed scalable implementation mrule for his-

tory H and reference implementation M.

Given a specification S , an arbitrary reference implemen-

tation M satisfying S , and a specific history H = X ++ Y

generated by M where Y SIM-commutes in H, the proof aims

to construct an implementation mrule that scales (is conflict-

free) within the SIM-commutative region Y of H, but is cor-

rect (generates responses compatible with M) for any history.

mrule operates in three modes: replay, conflict-free, and

emulation modes. Its state consists of three parts:

1. s.h[t], a per-thread history initialized as X ++

[COMMUTE] ++ (Y|t) (where COMMUTE is a special

marker);

2. s.commute[t], a per-thread flag which is set to TRUE

when COMMUTE is reached;

3. s.refstate, the state of reference implementation M.

Figure 1 shows pseudocode for mrule’s implementation.

mrule starts in replay mode. This mode replays the history

H as long as each thread invokes operations in the same order

as it did in H. While thread t has not yet reached the commu-

tative region, t’s invocation matches that of s.h[t] (line 5), and

the next action in s.h[t] is a response to t’s invocation (line 7),

mrule returns the matching response (line 8) and advances the

stored history s.h[u] of all threads (line 19).

If the next step in s.h[t] is COMMUTE, then s.commute[t]
is set to TRUE (line 4) and mrule enters conflict-free mode. In

this mode, mrule starts replaying steps in Y|t. Just like before,

if the next action in s.h[t] is a response to t’s invocation (line

7), mrule returns the matching response (line 8). However, it

advances only the stored history of t, namely s.h[t] (line 17).

This means that after mrule enters conflict-free mode for a

2

thread t (i.e., s.commute[t] = TRUE), it accesses and modifies

only those state components specific to t, and any steps in the

conflict-free region Y are conflict-free.

Once s.h[t] has fully replayed or if a thread t diverges—

that is, t’s next invocation does not match the next invocation

in s.h[t]—then mrule switches to emulate mode for all threads.

In this mode, mrule feeds the reference machine M invoca-

tions to determine the response to return. Before we can use

the reference machine M in this way, however, the state of M

must reflect the state of the execution history thus far.

We initialize M’s state by finding a witness of M that is

consistent with the execution history (line 10). A witness of

the execution history is a sequence of invocations that, when

fed to M, generates the execution history. Once a witness is

found, we know that feeding M the witness’s sequence of

invocations (line 12) will bring M to a valid state, where all

future responses will be valid according to the spec.

Finding a witness is easy before mrule reaches conflict-free

mode: since mrule generated the history X ++ Y, simply take

all invocations in X (up to the current point) in order as the

witness. However, if mrule has entered the conflict-free mode

and executed operations in the SIM-commutative region, the

order in which operations were executed in this region may

not equal the order in which operations were executed in Y.

Here is where SIM commutativity comes in: we can reorder

the operations in the commutative region of the execution

history to achieve a witness. Because of SIM commutativity,

we can initialize M with a witness comprised of commu-

tative actions in a different order than that in which they

were executed, and all future responses will still be valid

according to the specification.

3 The flaw

This last, bold statement is where the proof goes wrong. To

help build intuition, we now present a counterexample in

which the proof-constructed machine fails: the construction

cannot find a witness that will initialize M with a valid state.

3.1 Specification

Imagine a specification S for opening and closing files with

the following two operations:

1. int open(): returns a currently-unused file descriptor

with value > 0;

2. int close(int fd): returns OK on success, EBADFD if

fd was never opened, or ECLOSEDFD if fd was previ-

ously opened, but is currently closed.

To better understand S , we look at a couple of examples

of valid and invalid histories. Let α and β be thread IDs. The

following histories would be valid:

H1 = [openα, 1α, openβ , 2β , close(1)α, OKα]

H2 = [openα, 1α, close(2)β , EBADFDβ]

H3 = [openα, 1α, close(1)α, OKα, close(1)α, ECLOSEDFDα]

and the following histories would be invalid:

H′

1 =[openα, 1α, openβ , 1β]

(returns used FD)

H′

2 =[openα, 1α, close(2)α, OKα]

(should return EBADFD)

H′

3 =[openα, 1α, close(1)α, OKα, close(1)α, OKα]

(should return ECLOSEDFD)

Note that all sequences of open operations are SIM-

commutative regions: reordering any number of open opera-

tions satisfies S , since the returned FDs are still unique and

positive in value.

3.2 Reference implementation

We now choose a simple reference implementation M that

implements S . The implementation has two pieces of global

state, namely a counter gfd initialized as 0 and a closed set

initially empty. The two operations are implemented as fol-

lows:

1. int open: increment gfd and return the new value;

2. int close(int fd): if 0 < fd ≤ gfd and fd 6∈ closed,

then return OK and add fd to closed. Otherwise if fd ∈
closed, return ECLOSEDFD, else return EBADFD.

M satisfies S : open returns only unused, positive file de-

scriptors since the counter never (disregarding overflows)

repeats values. close(fd) returns OK if the file has been

opened, since all files below the current value of gfd must

have been opened before, and ECLOSEDFD if the file has

already been closed. Otherwise, fd is invalid and M returns

EBADFD.

Although M satisfies S , it is not scalable for SIM-

commutative regions: all open and close operations access

and write the shared, global counter and list.

We now have all the pieces to implement (and break) the

proof construction from subsection 2.4.

3.3 Incorrect construction

We first choose a SIM-commutative region of S . Since re-

gions of open operations are SIM-commutative, we generate

the following history using M:

Hcommute = [openα, 1α, openβ , 2β]

This history is used to set the state of mrule, initializing s.h[∗]
as

s.h[α] = [COMMUTE , openα, 1α]

s.h[β] = [COMMUTE , openβ , 2β]

Now we execute mrule on the following sequence of oper-

ations:

openβ , close(1)α

3

Following the proof construction, openβ will first cause

mrule to switch to conflict-free mode for β (Figure 1, lines

3-4) because s.h[β][0] = COMMUTE. After line 4,

s.h[β] = [openβ , 2β]

Next, since the invocation open matches the first invoca-

tion by β in s.h[β], mrule will return the value 2 (lines 5-8).

From line 17, the current state is now

s.h[α] = [COMMUTE , openα, 1α]

s.h[β] = []

The next invocation mrule receives is close(1)α. This

switches mrule to conflict-free mode for α (lines 3-4), and

sets the state to

s.h[α] = [openα, 1α]

mrule cannot, however, replay s.h[α] as it did for β.

close(1) represents a divergence from Hcommute, so mrule en-

ters emulate mode (lines 9-13). Our proof construction will

now have to get M to a valid state consistent with the current

history (line 10) so that we can feed M future invocations

during emulation phase (as shown in line 15).

At this point, our recorded history is

Hcurrent = [openβ , 2β]

But even though this history is correct (it’s in S), the ref-

erence implementation cannot exhibit this history. In M, the

first call to open always returns file descriptor 1.

This causes a serious problem. The construction must ini-

tialize s.refstate to some value that could have exhibited

Hcurrent, but no such state exists. As a result, any initializa-

tion sequence attempted by mrule can cause errors on future

invocations. Invoking open only once sets gfd = 1; a fol-

lowing open call would return 2, an invalid response (since

2 is still open). Invoking open two or more times would

avoid this problem, but would cause a following close(1)

call to return the incorrect error (ECLOSEDFD instead of

EBADFD). Thus, our proof construction fails both to find a

witness consistent with the current execution history and to

initialize M with a valid state.

3.4 When might the proof fail?

Note that M can reach a valid state if either none or all of

the SIM-commutative region in question has been replayed.

In other words, if mrule diverges before or after the SIM-

commutative region, then we can always get M to a valid

state. For the former, when mrule diverges before the SIM-

commutative region, we can just feed M the recorded his-

tory’s invocations sequentially in the order in which they oc-

curred (that order is precisely known). For the latter, when

mrule diverges after the SIM-commutative region, we know

there is at least one ordering of all operations in the SIM-

commutative region that M can generate, namely Hcommute.

Thus, feeding M all possible orderings of all the operations

in the SIM-commutative region until M reaches a valid state

must eventually terminate.

Furthermore, if a prefix of the operations in the SIM-

commutative region with the same order as in Hcommute oc-

curs before divergence, then feeding M the operations in this

order will also bring M to a valid state. This is because M

generated Hcommute by being fed operations sequentially in

this order.

The potential for failure arises only when a prefix of a re-

ordering of the SIM-commutative region occurs before di-

vergence, as demonstrated in our example. In this scenario,

we do know not know if this reordered sequence of invoca-

tions and responses can ever be generated by M.

3.5 Why does the proof fail?

The key problem is that our reference implementation M can-

not exhibit some histories required for SIM commutativity.

M is correct, so every history H exhibited by M is in S ,

but there may be some histories in S that M cannot exhibit.

That is, the reference implementation’s exhibited specifica-

tion—the set of histories that it can possibly exhibit—may

lack some traces in S . When this gap arises, and regions

that are SIM-commutative in S do not commute in the ex-

hibited specification, then M may not be able to achieve a

state consistent with the history our construction requires, as

shown in our example.

On the other hand, the proof construction likely works

whenever the given region SIM-commutes in the exhib-

ited specification. Put another way, our construction likely

works as long as “M, the reference implementation, produces

the same results for any reordering of the commutative re-

gion” (quoted from the published version of the proof in

Clements et al. [1]). Any prefix of a reordering of the SIM-

commutative region would still SIM-commute in the exhib-

ited specification because M produces the same result for any

ordering, and thus we can eliminate the failure case of our

proof construction.

3.6 How to fix the proof?

We have seen that a bad reference implementation can pre-

vent our proof technique from producing an implementation

that scales within a given commutative region. We consid-

ered several fixes for this issue.

1. Exhibited specification. As we noted above, the proof

construction will likely work if we restrict the rule to

regions that are SIM-commutative in the exhibited spec-

ification, rather than those that are SIM-commutative in

the defined specification.

2. Specification oracle. Alternately, we could remove the

reference implementation from the proof entirely, and

instead rely on a specification oracle that enumerates

valid responses to invocations.

4

1 moracle(s, i) ≡
2 t ← thread(i)
3 hcopy ← []
4 hperf ← []
5 If s.mode 6= ORACLE:

6 If s.X_copy = []: // enter conflict-free mode

7 s.mode← CONFLICT-FREE

8 hcopy ← s.Y_copy[t]
9 hperf ← s.Y_performed[t]
10 else: // still in replay mode

11 hcopy ← s.X_copy

12 hperf ← s.X_performed

13 If head(hcopy) = i:

14 hcopy.pop()
15 If head(hcopy) is a response & thread(head(hcopy)) = t:

16 r← head(hcopy)
17 hperf .append((i, r))
18 else: // h.copy empty or input diverged

19 s.mode← ORACLE

20 If s.mode = ORACLE:

21 for each possible response resp to invocation i:

22 H′ ← a history consistent with performed actions

23 If OS (H′ ++ [(i, resp)]) = TRUE:

24 r← resp

25 s.oracle_performed.append((i, r))
26 break

27 else if s.mode = CONFLICT-FREE:

28 s.Y_copy[t]← tail(s.Y_copy[t])
29 s.Y_performed[t]← hperf

30 else: // replay mode

31 s.X_copy← tail(s.X_copy)
32 s.X_performed← hperf

33 Return 〈s, r〉

Figure 2: Verified constructed scalable implementation

moracle for history H and reference implementation M.

Exhibited specifications would preserve the somewhat

“practical" feel of the flawed proof, and the useful intu-

ition that a scalable implementation can be obtained from

a non-scalable implementation by logging and reconcilia-

tion. However, this is stricter than SIM commutativity, which

places requirements on the specification, not the implemen-

tation. This prevents the SCR from, for example, informing

programmers about potential areas to increase the scalability

of their implementations.

Specification oracles feel less realistic than reference im-

plementations, but they have the advantage of completely

avoiding the issue of whether a given specification can be

implemented at all. They also fit nicely into Coq. Because of

these reasons, our machine-verified proof uses specification

oracles.

4 The Verified Proof

This section describes our machine-verified proof of the SCR

based on a specification oracle. The pseudocode for our

proof construction moracle is shown in Figure 2.

4.1 Oracle proof construction

An oracle OS is a function from a history H to

{TRUE, FALSE} defined as

OS (H) =

{

TRUE H ∈ S

FALSE H 6∈ S

Given a specification S , an oracle OS , and a specific his-

tory H = X ++ Y where Y SIM-commutes in H, the proof

constructs an implementation moracle that executes conflict-

free within the SIM-commutative region Y.

moracle operates in three modes: replay, conflict-free, and

oracle modes. Its state consists of three parts (with sub-

parts):

1. Copies of H as histories to replay:

• s.X_copy, a global list of actions initialized as X

• s.Y_copy[t], a per-thread list of actions initialized

as Y|t

Note that these copies of H are equivalent to the per-

thread copies s.h[t] of H used in the original proof con-

struction. The split here into X_copy and Y_copy[t] al-

lows us to cleanly separate the global state from the per-

thread state in our Coq formulation. Instead of checking

for a COMMUTE marker to indicate when the Y region

has been reached, our construction will check if X_copy

is empty.

2. Lists of performed actions:

• s.X_performed, a global list of performed actions

of X initialized as []

• s.Y_performed[t], a per-thread list of performed

actions of Y|t initialized as []

• s.oracle_performed, a global list of performed ac-

tions in oracle mode initialized as []

3. s.mode, a global flag indicating the current mode of the

machine

The replay and conflict-free modes act similar to the cor-

responding modes of mrule from the prior proof. If moracle is

not already in oracle mode, then moracle is in replay mode if

s.X_copy is nonempty, or in conflict-free mode if s.X_copy

is empty (line 6). If both s.X_copy and s.Y_copy[t] for all t

are empty, moracle switches to oracle mode (line 19).

In replay mode, if the next requested invocation matches

the next invocation in s.X_copy and the next action in

s.X_copy is a response to that invocation, moracle pops the

head off of s.X_copy, returns the response, and appends the

5

response to s.X_performed (lines 13-17). Otherwise, moracle

has diverged from X ++ Y and switches to oracle mode.

In conflict-free mode (set up in lines 7-9), if the next

requested invocation by t matches the next invocation in

s.Y_copy[t] and the next action in s.Y_copy[t] is a response to

that invocation, moracle returns the response and appends the

response to s.Y_performed[t] (lines 13-17). Otherwise, the

execution has diverged and moracle switches to oracle mode.

In oracle mode, the next response is determined by query-

ing the oracle function. moracle iterates through all possible

responses r to the invocation i and calls OS (H′ ++ [r]),
where H′ is a history consistent with the performed actions

in the history (s.X_performed, s.Y_performed[t] for all t, and

s.oracle_performed). If the oracle returns true, then moracle

stops iterating, returns r, and the chosen response is ap-

pended to s.oracle_performed (lines 20-25).

More specifically, H′ is constructed as

s.X_performed

++s.Y_performed[t0] ++ · · · ++ s.Y_performed[t#threads]
++s.oracle_performed

Because of SIM commutativity, any ordering of operations

in Y satisfies the spec. Thus, sequentially concatenating the

s.Y_performed[∗] to construct H′ generates a valid history.

Note that while in conflict-free mode, moracle executes in a

scalable way: no thread accesses another’s state. Thus, moracle

should satisfy the SCR. In the next section, we describe how

we verified this claim.

4.2 Coq formalization

Here we give an overview of how we formalized

the proof construction and proved its correctness

in Coq. The complete Coq source is available at

https://github.com/tslilyai/coq_scr.

4.2.1 Definitions

Our Coq model includes definitions for action histories (see

Section 2), the machine state and modes as described above,

conflict-freedom, SIM commutativity, and machine execu-

tion. These definitions are presented in the Appendix (Fig-

ure 3). Actions are tuples of 〈threadID, op, response〉, and

histories are (reversed) lists of actions. We create an enum

for modes, and use a record to encode state, where the record

contains either thread-specific or global histories. Per-thread

state is represented as a function from tid to history.

Defining conflict-freedom requires defining conflict-free

writes and reads. To define conflict-free writes, we use

two constructions: diff_histories_tid_set takes two histo-

ries and returns the set of threads whose per-thread histo-

ries (s.Y_performed[t] or s.Y_copy[t]) change from the first

history to the second. diff_states_tid_set takes two states

and uses diff_histories_tid_set to return the set of threads

that have had their per-thread state changed between the two

states. Note that per-thread state in our construction changes

only if per-thread history changes.

With these constructions, we can define conflict-free

writes (conflict_free_writes). All writes performed during a

step of the machine from state s1 to s2 on thread t are conflict-

free writes if:

• the global state of s1 and s2 have equivalent values

• either the per-thread state of s1 and s2 have equivalent

values, or the diff_states_tid_set(s1, s2) must contain

at most the single calling thread t

These restrictions guarantee that any writes made during this

step only modify t’s state.

We define conflict-free reads (conflict_free_reads) as fol-

lows: say the machine takes a step i on thread t from state

s1. Then this step performs only conflict-free reads if, for

any state s2 with the same per-thread state of t and the same

mode as s1,

• the machine returns the same value when executing i

from s2 as it does executing i from s1

• the state of the mode is unchanged when the machine

executes i from either s1 or s2

Equivalent return values ensure that no read during the ma-

chine step depends on another thread’s state or any global

state apart from the mode; s1 and s2 are only restricted in

their values of the per-thread state of t and the mode. Un-

changing modes ensure that the only piece of global state

(the mode) read by the machine in executing the step will

not be modified during the step, which would cause the read

to conflict with the modifying write.

With both conflict-free writes and conflict-free reads, we

can prove a step is conflict-free by proving that the step’s

writes and reads are both conflict-free.

Note that this definition of conflict-freedom is quite dif-

ferent than the one presented in by Clements et al. in the

original SCR paper, which reasoned about conflicts in terms

of memory access sets. Instead, our Coq definition is special-

ized for the mechanics of our proof construction, and allows

us to reason on the much higher level of our construction’s

abstract per-thread state (e.g., s.Y_copy[t]) rather than indi-

vidual memory accesses.

4.2.2 Theorem statements

The final theorem and important lemmas are shown in the

Appendix (Figure 4). Key helpers to prove these lemmas in-

clude determining the current mode and state of the machine,

definitions for switching between modes when appropriate,

and lemmas proving correctness of the machine when the

machine is at each mode.

Our proof strategy was to first prove two lemmas,

namely machine_correct, which states that the machine

moracle generates only histories satisfying the spec, and ma-

chine_conflict_free, which states that the machine execution

is conflict-free during the SIM-commutative region Y. We

used these lemmas to prove our final statement of the SCR:

1. Correctness: All histories achievable by moracle satisfy

the spec and moracle never returns an invalid response

6

https://github.com/tslilyai/coq_scr

2. Conflict-freedom: Any step moracle takes in the SIM-

commutative region Y is conflict-free

4.3 Proof assumptions and evaluation

Our Coq proof makes several assumptions, encoded as pa-

rameters or as part of the definition:

• The oracle can enumerate all possible responses. For

our proof, we assume something stronger, namely that

the number of responses is finite; finiteness was nec-

essary to convince Coq that the oracle function termi-

nates.

• For every invocation that is valid to call, there exists a

valid response to return.

• The oracle is correct: for all H, OS (H) = TRUE ⇐⇒
H ∈ S .

We made a number of decisions to ease the proof process.

As we described earlier, we reason about conflict-freedom at

a high level (without, for example, modeling memory arrays

or low-level memory accesses as we did in our first attempt).

This abstraction greatly simplified the proof process. We also

switched to local reasoning, i.e., reasoning about steps of the

machine, rather than proving facts about the machine’s en-

tire history, and we found that non-inductive definitions (for

example, for reordered histories) made the proofs easier to

handle. Finally, we proved all lemmas using the reverse of

histories: because histories are defined as a list, the generated

inductive cases were more intuitive (new actions are added

to the head, not the tail, of the list).

The entire Coq development is 2056 LOC, of which 562

lines are state definitions, lemmas, and theorems. The ef-

fort took approximately 3 person-months, including several

weeks stuck on verifying the original (incorrect) proof. We

believe that without attempting to verify the published proof

in Coq, the flaw in the proof may have been difficult to find.

5 Discussion and Conclusion

We have presented an initial proof for the SCR, an exam-

ple and brief discussion about how it is incorrect, and a new,

verified proof for the SCR. However, the new proof is not

wholly satisfactory. Most notably, the verified proof relies

on the existence of a specification oracle, which causes it to

stray even further from an imaginable construction than the

original proof. We also assume enumerable responses, which

may be practically true but fails to capture the intended se-

mantics of any spec that semantically returns responses in,

for example, R. Furthermore, any construction that requires

an oracle to iterate through an enumerable (but potentially

infinite) number of responses is absurd in practice.

Problems in applying the SCR in practice are not restricted

to the proof: the SCR statement itself may be unsuitable for

conveying concrete information to implementers about how

to design scalable systems in practice. For one, the SCR is

a rule that applies only for a particular commutative region,

rather than all commutative regions of a spec. If a spec has

100 commutative regions, then we know each commutative

region has a implementation scalable for that region; how-

ever, we do not know if all 100 implementations are differ-

ent, or if one implementation exists that will scale for all (or

even multiple) commutative regions.

Furthermore, as illustrated by our oracle-based proof con-

struction, scalability may not always be optimal: an imple-

mentation may scale but not necessarily be more performant.

In its current form, the SCR serves best as a hint that cer-

tain implementations can be made more scalable and a sug-

gestion for areas for potential implementation optimization.

For example, this use of the SCR served Clements et al. well

in constructing sv6 [1]. It remains an open question about

whether there is a way to extend the SCR, or modify the

proof construction to aid implementers in designing practi-

cal, scalable systems. Perhaps there is a way to formulate the

SCR to apply not only to one particular commutative region,

but rather a class of commutative regions. Or perhaps a proof

construction exists for a more restricted class of commuta-

tive systems that lends itself toward efficient and practical

systems.

Many other questions remain, such as whether there are

specs for which all practical implementations of the spec will

not commute for the SIM-commutative regions of the spec.

In other words, are there specs for which the only fully scal-

able implementation must have the equivalent of an oracle?

We see the space between the commutativity of implementa-

tions of a spec, and the commutativity of the spec itself as a

fruitful area to explore in future work.

6 Acknowledgments

This research was supported by NSF award CNS-1302359.

References

[1] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T.

Morris, and E. Kohler. The scalable commutativity

rule: Designing scalable software for multicore proces-

sors. ACM Transactions on Computer Systems (TOCS),

32(4):10, 2015.

[2] M. P. Herlihy and J. M. Wing. Linearizability: A correct-

ness condition for concurrent objects. ACM Transac-

tions on Programming Languages Systems, 12(3):463–

492, 1990.

7

Definition action : Type := tid * invocation * response.

Definition history : Type := list action.

Inductive mode : Type :=

| ConflictFree : mode

| Oracle : mode

| Replay : mode.

Record state := mkState {

X_copy : history;

Y_copy : tid -> history;

X_performed : history;

Y_performed : tid -> history;

oracle_performed : history;

md : mode

}.

Parameter sim_commutes :

forall hd tl tl’ Z,

reordered (hd ++ tl) Y ->

reordered tl’ tl ->

spec (Z++tl++X) ->

spec (Z++tl’++X).

Section Conflict.

Definition diff_histories_tid_set {A : Type} (ts1 ts2 : tid -> A) : Ensemble tid :=

fun tid => ts1 tid <> ts2 tid.

Definition diff_states_tid_set (s1 s2 : state) : Ensemble tid :=

Union tid

(diff_histories_tid_set s1.(Y_performed) s2.(Y_performed))

(diff_histories_tid_set s1.(Y_copy) s2.(Y_copy)).

Definition conflict_free_writes (t :tid) (s1 s2 : state) :=

diff_states_tid_set s1 s2 = Singleton tid t /\

s1.(md) = s2.(md) /\

s1.(X_copy) = s2.(X_copy) /\

s1.(X_performed) = s2.(X_performed) /\

s1.(oracle_performed) = s2.(oracle_performed).

Definition conflict_free_reads t i s :=

forall (s1 s2 s1’ s2’: state) (a1 a2: action),

s1.(Y_copy) t = s.(Y_copy) t ->

s2.(Y_copy) t = s.(Y_copy) t ->

s1.(Y_performed) t = s.(Y_performed) t ->

s2.(Y_performed) t = s.(Y_performed) t ->

s1.(md) = s.(md) ->

s2.(md) = s.(md) ->

machine_act s1 t i = (s1’, a1) ->

machine_act s2 t i = (s2’, a2) ->

a1 = a2 /\ s1’.(md) = s.(md) /\ s2’.(md) = s.(md).

End Conflict.

Definition machine_act (s : state) (t: tid) (i : invocation) : (state * action) :=

let mode := next_mode s t i in

match mode with

| Oracle => get_oracle_response (state_with_md s Oracle) t i

| ConflictFree => get_conflictfree_response (state_with_md s ConflictFree) t i

| Replay => match rev (s.(X_copy)) with

| [hd] => get_replay_response (state_with_md s ConflictFree) t i

| _ => get_replay_response (state_with_md s Replay) t i

end

end.

Figure 3: Definitions for proving the SCR

8

Lemma machine_correct :

forall s h,

generated s h ->

spec h.

Lemma machine_conflict_free :

forall s s’ h t i r,

generated s (h ++ X) ->

spec ((t,i,NoResp) :: h ++ X) ->

(exists h’, reordered (h’ ++ (t,i,r) :: h) Y) ->

machine_act s t i = (s’, (t,i,r)) ->

conflict_free_step t s s’.

Theorem scalable_commutativity_rule :

(* All achievable histories satisfy the spec and *)

(* the machine never returns an invalid response *)

(forall s h t i r,

current_state_history s h ->

spec h /\

(List.In (t,i,r) h -> exists rtyp, r = Resp rtyp))

(* If the machine’s next step is in the middle of a (reordering of) *)

(* a SIM-commutative region Y, then the machine’s execution of the *)

(* step is conflict free. *)

/\ (forall s s’ h t i r,

current_state_history s (h ++ X) ->

spec ((t,i,NoResp) :: h ++ X) ->

(exists h’, reordered (h’ ++ (t,i,r) :: h) Y) ->

machine_act s t i = (s’, (t,i,r)) ->

conflict_free_writes t s s’

/\ conflict_free_reads t i s).

Figure 4: Theorems proven about the SCR in Coq

9

	1 Introduction
	2 The Scalable Commutativity Rule
	2.1 Specifications
	2.2 Commutativity
	2.3 Rule
	2.4 Proof

	3 The flaw
	3.1 Specification
	3.2 Reference implementation
	3.3 Incorrect construction
	3.4 When might the proof fail?
	3.5 Why does the proof fail?
	3.6 How to fix the proof?

	4 The Verified Proof
	4.1 Oracle proof construction
	4.2 Coq formalization
	4.2.1 Definitions
	4.2.2 Theorem statements

	4.3 Proof assumptions and evaluation

	5 Discussion and Conclusion
	6 Acknowledgments

