
Energy Management in Mobile Devices with the Cinder
Operating System

Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières
Stanford University

Nickolai Zeldovich
MIT CSAIL

ABSTRACT

We present Cinder, an operating system for mobile phones
and devices, which allows users and applications to con-
trol and manage limited device resources such as energy.
Cinder introduces two new abstractions, reserves and taps.
Unlike prior approaches, Cinder accurately tracks prin-
cipals responsible for resource consumption even across
interprocess communication, and allows applications to
delegate their resources either in terms of rates or quanti-
ties. Rates can enforce system lifetime, while quantities
can enforce dataplan or talk time limits. Proportional taps
allow threads to prevent their descendants from hoarding
unused energy. Cinder additionally institutes a global
half-life to prevent malicious applications from starving
the rest of the system.

We explore these abstractions, demonstrating their use-
fulness in a variety of applications running on the HTC
Dream (a.k.a. Google G1). We show how Cinder main-
tains system lifetime in the presence of malicious applica-
tions, reserves energy for critical functions such as 911,
supports energy-aware applications, easily augments ex-
isting Unix applications with energy polices, properly
amortizes costs across multiple principals, and allows ap-
plications to sandbox untrusted subcomponents (such as
browser plugins).

1 INTRODUCTION

In the past decade, mobile phones have emerged as a
dominant computing platform for end users. These very
personal computers depend heavily on graphical user in-
terfaces, always-on connectivity, and long battery life, yet
in essence run operating systems originally designed for
workstations (Mac OS X/Mach) or timesharing systems
(Linux/Unix).

Historically, such operating systems have had poor
energy management or accounting support. This is not
surprising: the first commodity laptop with performance
similar to a desktop, the Compaq SLT/286 [1], was re-
leased just one year before the C API POSIX standard.
The limitations of POSIX have prompted a large body of
research to manage and control energy, ranging from CPU

scheduling [9] to accounting [21] to offloading network-
ing. Despite all of this work, however, current systems
still provide little if any application control or feedback.

In the meantime, mobile devices are shifting from
low-function proprietary applications to robust multipro-
grammed systems with applications from thousands of
sources. Recently Apple announced that their App Store
now houses 185,000 apps [3] for the iPhone with more
than 4 billion individual application downloads. This ex-
plosion of mobile software complexity and application
availability makes it difficult to reason about the energy
requirements and expenditures of mobile systems. As ap-
plications are bound to shift from simply being buggy to
being outright malicious it will be critical that mobile op-
erating systems provide mechanisms to protect the user’s
data and resources.

Recently, Android added the ability to track estimates
of individual application energy consumption. This track-
ing uses a static cost model to various calls and counters
like CPU time, packet counts, and Global Positioning Sys-
tem (GPS) requests. This represents a large step forward
for helping consumers understand the mysteries of mobile
device lifetime. But while Android provides improved
visibility into system power use power use, it does not
provide control. Besides manually configuring applica-
tions and manually checking power use every once in a
while, there is no way for a user to enforce a maximum
power draw or control system lifetime.

If we were to design a mobile phone operating sys-
tem kernel from scratch, what would it look like? This
paper presents an answer to this question: Cinder, an
operating system designed around security as well as
fine-grained resource accounting and control. To provide
strong security, Cinder builds on top of the information-
flow control facilities of the HiStar exokernel [19]. For
resource management and control, Cinder takes advantage
of device-level accounting and modeling, and accurately
tracks parties responsible for resource use even across
interprocess communication calls serviced in other ad-
dress spaces. It provides reserves for resource delegation,
which act as an allotment from which applications can
draw resources, and taps, which place rate limits on the

1

consumption of applications and provide a point for fine-
grained accounting. Taps connect reserves to one another
allowing resources to flow through a graph to applications.
Together, these abstractions allow users and applications
to express their intentions, enabling the system to com-
pose those concerns for policy enforcement.

We leverage Cinder’s new abstractions in libraries,
tools, and applications which enforce many typical and
atypical energy policies. Cinder provides a working Unix-
like environment running on AMD64, i386, and, most
recently, ARM, beginning with our implementation on
the HTC Dream (a.k.a. Google G1). We also provide util-
ities that allow crafting energy policies for existing Unix
applications that are unaware of these abstractions, and
make expressing and composing many policies a simple
matter of shell scripting.

2 A CASE FOR ENERGY CONTROL

There is rich prior work on addressing the visibility prob-
lem [20, 21, 12, 11] of attributing consumption to appli-
cation principals. Control, in contrast, has seen much less
effort. Early systems like EcoSystem [20] proposed high-
level application power limits. Mobile applications today,
however, are much more complex: they spawn and invoke
other services and have a much richer set of peripherals
to manage.

We believe that for users and applications to effectively
control power, an operating system must provide three
mechanisms: isolation, subdivision, and delegation. We
motivate these mechanisms through three application ex-
amples that we follow through the rest of the paper.

Isolation is a fundamental part of an operating system.
Memory and IPC isolation provide security, while cpu and
disk space isolation ensure that processes cannot starve
others by hogging needed resources. Isolating energy con-
sumption is similarly important. An application, whether
rogue or buggy, should not be permitted to consume in-
ordinate energy or the energy of others. Consider two
processes in a system, each with some share of system
energy. To improve system reliability and simplify system
design, the operating system should isolate each process’
share from the other’s. If one process forks several addi-
tional processes, these children must not be able to steal
the energy of the other. As a more concrete example,
the energy a phone reserves for an emergency 911 call
should be isolated from the rest of the system, so that
other programs cannot use it.

Web browsers run (sometimes untrusted) plugins.
Given that a browser receives a finite amount of power, it
might want to protect itself from buggy or poorly written
plugins that waste CPU energy. The browser would like
to subdivide its energy so that it can give plugins a small
fraction, knowing that isolation will prevent them from
using its own lion’s share. The ability to subdivide en-

ergy is critical for applications to be able to invoke other
services without sacrificing all of their own resources.

Finally, there are times when applications need to allow
others to use their energy, but do not want to carve off
a reserved, isolated subdivision. The ability to delegate
resources is an important enabler of inter-application co-
operation. For example, the Cinder netd networking stack
implicitly transfers energy into a common radio activation
pool when an application cannot afford the high initial
expense of powering up the radio. By delegating their
energy to the radio, multiple processes can contribute to
expensive operations; this can not only improve quality
of service, but even reduce energy consumption.

Prior systems like EcoSystem [20] and Currentcy [21]
provide isolation, but not subdivision or delegation. Isola-
tion is sufficient when applications are static entities, but
not when they themselves spawn new processes or invoke
complex services. Subdivision lends naturally to standard
abstractions such as process trees, resource containers and
quotas, while delegation is akin to priority inheritance.

3 DESIGN

Cinder is based on the HiStar operating system [19] which
is a secure exokernel [8] that controls information flow
using a label mechanism. The kernel provides a small
set of kernel object types to applications, from which the
rest of system is built: threads, address spaces, segments,
gates, containers, and devices. Cinder adds two new
kernel object types: reserves and taps. This section gives
an overview of HiStar, describes reserves and taps, gives
examples of how they can be used, and provides details
on their security and information flow.

3.1 HiStar
The HiStar exokernel provides data-centric security poli-
cies on top of a set of six first-class kernel objects. Its
segments, threads, address spaces, and devices are similar
to conventional kernels. Containers provide hierarchical
control over deallocation of kernel objects – objects must
be referenced by a container or face garbage collection.
Gates provide protected control transfer of a thread from
one address space to a named point in another address
space, and provide the basis for inter-process communica-
tion (IPC). Invoking a gate requires a privilege check and
can optionally grant privileges to the calling thread.

More complex abstractions (files, processes etc.) are
composed of these objects. The system has Unix-like
compatibility through a library which runs stock software
packages (bash, Xorg, xpdf, etc.). HiStar provides a single
security primitive, labels, which makes these composi-
tions safe while allowing fine-grained protection (e.g. on
behalf of users, applications, processes, web origins, etc.).

Although the Unix security model of users and groups
was not designed with mobile applications in mind, plat-

2

forms such as Android have managed to contort the
system into providing some protection between appli-
cations [4]. HiStar’s flexible security model allows Cin-
der to provide fine-grained, application-specific policies
which are enforced by the small trusted kernel without
re-purposing complex legacy mechanisms.

In HiStar, every kernel object is tagged with an im-
mutable label at the time of its creation. Labels determine
which threads can observe and which can modify the ob-
ject. Roughly speaking, an object’s label consists of a
set of categories that restrict which threads can observe
or modify the object. Threads own particular categories,
which gives them privileges over objects labeled with
those categories. Specifically, to observe an object, a
thread must own all of the read categories in the object’s
label. To write the object, the thread must additionally
own all of the write categories in the label. Any thread
can create a new read or write category and place that
category in the labels of objects it creates. It can also
grant ownership of the category to other threads, so as to
share privilege.

There is a third option besides read and write permis-
sions: HiStar’s information flow control allows one to
label an object such that a thread may observe the object
but only on condition that it give up the ability to commu-
nicate with the network or other processes. We believe
such policies are crucial for protecting users’ privacy and
system integrity in an environment like mobile phones
where users run untrusted applets. However, the original
HiStar paper [19] already extensively discusses such uses
of information flow control, so this paper concentrates on
Cinder’s contributions in resource management.

HiStar provides containers that allow effective account-
ing and revocation of storage resources. But the container
hierarchy is insufficient for dealing with the complexi-
ties of energy management or resources where control
over consumption rate is as important as quantity. Fur-
thermore, powerful, hierarchical delegation of resources
along a single hierarchy is insufficient. A system may
want to group applications in one way for partitioning stor-
age, another way for distributing energy, and yet another
for distributing networking quotas. These shortcomings
led us to rethink resource management, ultimately pro-
ducing two new kernel object types: reserves and taps.

3.2 Reserves
A reserve describes a right to use a given quantity of a
resource, such as energy. When an application consumes
a resource the Cinder kernel reduces the values in the
corresponding reserve. The kernel prevents applications
from performing actions for which the reserve does not
have sufficient resources. Reserves, like all other ker-
nel objects, are protected by a security label (§3.6), that
controls which threads can use and manipulate it.

All threads are associated with a reserve from which
they draw energy. Cinder’s scheduler is energy-aware and
allows threads to run only if they have the required energy
resources. Threads that have depleted their energy reserve
cannot run which prevents new energy spending. This
alone is sufficient to throttle energy consumption.

Reserves allow threads to delegate and subdivide their
available resources. For example, an application granted
1000 mJ of energy can subdivide this reserve into 800 mJ
and 200 mJ reserves, allowing another thread to connect
to the 200 mJ reserve. Threads can also perform a reserve-
to-reserve transfer of resources provided the thread is
permitted to modify the level of both reserves.

Reserves track resources consumed from them by appli-
cations in order to provide accounting information to the
user and applications, allowing applications to be made
energy-aware. Finally, reserves can be deleted directly or
indirectly when some ancestor of their storage container
is deleted. Global decay allows the system to eventually
recover the resources.

3.3 Taps
In theory, reserves are sufficient to control the system-
wide use of resources. Transfer of resources between re-
serves could be implemented by special-purpose threads
that explicitly move resources between reserves, and im-
plement any rate-limiting and accounting policies that the
resource owner requires. For example, suppose there are
five applications, each of which should be able to con-
sume an average of 1W of energy. To implement this,
the administrator could create five reserves, one for each
application, along with 5 threads, each of which is respon-
sible for slowly transferring energy into one application
reserve. Each thread would transfer energy until the appli-
cation’s reserve fills up to some maximum level (e.g. 2J),
and would keep track of how much energy was transferred
to that application.

However, this approach is likely to be inefficient in
practice. If we want to perform fine-grained resource
transfers and accounting, these special-purpose threads
could consume a large fraction of the energy they transfer,
if not more. Thus, we introduce a tap abstraction, which
is conceptually an efficient, special-purpose thread whose
only job is to transfer energy between reserves. While a
reserve provides a quantity of a resource that can be con-
sumed, a tap controls the rate at which a resource can be
consumed. A tap has four pieces of state: a rate, a source
reserve, a sink reserve, and a security label containing the
privileges necessary to transfer the resources between the
source and sink (§3.6).

Taps support two types of rates: constant and propor-
tional. A constant tap transfers a fixed quantity of re-
sources per unit time. For example, an application may be
connected to the system battery via a tap supplying 1 mJ/s

3

Figure 1: A 15 kJ battery or “root reserve” connected to a reserve via a
tap. The battery of the device is protected from being misused by the
web browser. The web browser draws energy from an isolated reserve
which is fed by a 750 mW tap.

Figure 2: A common idiom in Cinder. The reserve on the left sources 1
mW of energy to the reserve on the right. Unused energy is taxed at a
rate of 10%/sec and returned to the reserve on the left. The right reserve,
while unused, converges on 10 mJ naturally as a product of the in and
out taps.

which is 1 mW. Proportional taps transfer a portion of
their source’s resource per unit time. The principal use
of proportional taps is to force a reserve to return unused
resources and prevent hoarding.

Reserves and taps form a graph of resource consump-
tion rights. In Cinder the system battery is represented in
the resource graph as the root reserve of which the energy
in all other reserves are a subdivision. Figure 1 shows a
simple example of a web browser whose consumption is
rate limited. This limit guarantees that even if the browser
is aggressively using energy the battery will last at least 6
hours.

3.4 Reclaiming Unused Resources
Users and applications need to be able to give a task
the ability to consume resources at a high rate but make
sure that the task returns unused resources. For example,
a foreground application on a phone may need to fully
utilize many peripherals and drive the device at peak
power. This requires giving the application a reserve
fed with a very high tap. But this raises a problem: if the
application draws less than the tap, the reserve will slowly
fill with energy that no other application can use.

Cinder applications can solve this problem using pro-
portional taps, as shown in Figure 2. In this configuration,
the reserve on the right is limited to a maximum average
power draw of 1mW. The backwards proportional tap
means the right reserve can store up to 10s of this power
(10mJ) for bursty operations. Once the reserve reaches
10mJ, the backwards proportional tap drains the reserve
as quickly as the forward constant tap fills it.

3.5 Hoarding and Resource Decay
Backwards proportional taps allow applications to prevent
energy from accumulating into reserves where it cannot
be used. However, these backward taps do not prevent an
application from hoarding energy. A thread can sidestep

the taxation of a reverse tap by creating a new reserve
with no proportional taps and periodically transferring
resources to it. A malicious application could, over time,
accumulate energy equal to the battery and starve the rest
of the system.

While sophisticated constraints on reserve creation and
resource transfer can eliminate this problem, these con-
straints significantly complicate energy-aware applica-
tions. Instead, Cinder prevents hoarding by imposing a
global, long-term decay of resources across all reserves.
Every reserve has an implicit proportional backwards tap
to the battery.

This long-term decay prevents unbounded hoarding
while keeping the application interface simple. Cinder
computes decay using a system-wide half-life. Analogous
to radioactive decay, each half-life period of time results
in 50% of the energy stored in each reserve to be returned
to the root (battery) reserve. In Cinder, the half-life is
set to be shorter than the time between renewals of the
resource (e.g. charging the device’s battery), but long
compared to the time quantum of an application. By
default our system is configured with a 10 minute half-life.
A long half-life allows applications to accumulate and
store energy for significant periods, but allows the system
to make large-scale, long-term hoarding impossible.

3.6 Access Control & Security
Cinder’s reserves and taps are egalitarian: any thread can
create a reserve or tap to subdivide and delegate its re-
sources. Securing them is a matter of making information
flow explicit in the resource graph formed by the reserves
and taps, which requires ensuring the new kernel object
types are protected by appropriate security labels and that
all interactions with them obey those labels.

Reserves, being a passive construct, are easy to pro-
tect. Like other objects in HiStar, a reserve has a simple
security label that describes which privileges are needed
to observe (read) it or modify (write) it. Using resources
from a reserve requires both read and write privileges:
read because a failed draw provides information on the
value (zero) and write for when it succeeds.

A tap actively moves resources between a source re-
serve and a sink reserve. Therefore, the tap needs permis-
sion to read and write both the source and sink, in order
to decrease and increase the level, respectively. It may
be the case that the source and sink’s labels restrict infor-
mation flow between the two objects, in which case any
thread would need privilege to write both of them. For
this reason, taps may own categories just like threads [19].
(A thread must own any categories that it grants to a tap
it creates.) Storing privileges in taps conveniently and
safely allows taps to transfer resources between reserves
even involving complex security policies.

4

3.7 Accurate Accounting via Gates
HiStar’s gate object type forms the basis of inter-process
communication in Cinder. A gate is a named entry point in
an address space, typically corresponding to a daemon or
system service available over IPC. When a thread invokes
a gate, it transitions from its original address space to
the address space of the service it is invoking. Unlike
traditional IPC, in which a thread in a client process sends
a message to a thread in a server process, with HiStar
the calling thread itself enters the server’s address space.
Since Cinder tracks resource consumption by the active
reserve of a thread, the caller of a system-wide service
is billed for resource consumption it causes, even while
executing in the other address space.

In contrast, other systems such as Linux or OS X for the
iPhone would need some form of message tracking during
inter-process communication in order to heuristically bill
the correct principals for resource consumption. Cinder
provides more accurate accounting naturally. Cinder’s
netd networking stack, described in more detail in §6.3,
takes advantage of this making it easy to bill threads for
energy consumption due to network access.

3.8 Atomic Transfers and Debits
Many system service operations need to be performed in
an all-or-nothing way. For example, work is wasted if
an application begins a TCP flow but cannot finish it due
to a lack of resources. Cinder’s user space networking
stack, therefore, ensures a thread has a threshold of energy
before allowing a thread to queue a packet (e.g. enough
energy to turn on the radio). Furthermore, being a user
space networking stack, the kernel is unaware of how
much energy to bill threads for received packets, hence
threads should be able to debit their own reserves even if
the debit causes the reserve to go into debt to perform this
accounting in user space (likely while under control of a
gate, as in the case of the networking stack).

To provide for these cases, Cinder’s system calls for
transferring resources can optionally fail if there are inad-
equate resources to complete the transfer or can transfer
as much as is available from the source. Likewise, a debit
of a reserve can fail if the reserve’s level is too low or can
be forced even if it causes its level to become negative.
These options allow a service to guarantee that a thread
has enough resources to complete an action beforehand
and set aside some amount for payment, forming primi-
tives for a sort of resource-aware locks. Forcing debits
also allows the actual cost for the action to be billed even
if it can only be determined after-the-fact and the debit
would leave the reserve with a negative level.

3.9 Resource Inversion
Resource limits can lead to resource inversions, where
a thread with plenty of resources available cannot run

reserve_create(container, label)

reserve_get_level(reserve)

reserve_get_total_consumed(reserve)

self_get_active_reserve()

self_set_active_reserve(reserve)

tap_create(container, source, sink, label)

tap_set_rate(tap, tap_type, rate)

reserve_transfer(source, sink, amount, can_fail)

reserve_debit(reserve, amount, can_fail)

Figure 3: System call interface for reserves and taps.

because a thread holding a lock has run out of resources.
The solution is similar to more traditional priority inver-
sion. The thread blocked on the lock can donate resources
to the thread holding the lock; just as a thread can lend its
priority, a thread can lend its resources.

4 IMPLEMENTATION

We implemented our abstractions in the Cinder kernel,
which runs on AMD64, i386, SPARC, and ARM archi-
tectures. The kernel is available under the GNU General
Public License version 2 and is freely available via the
Internet. Our principal experimental platform is the HTC
Dream (Google G1), a modern smartphone based on the
Qualcomm MSM7201A chipset. We have ported Cinder
to the HTC Dream and profiled its energy usage. Be-
cause porting a kernel to a mobile phone platform is a
non-trivial task that is rarely attempted, we describe our
process here.

4.1 HTC Dream Port
To run Cinder on the HTC Dream we first ported the
kernel to the generic ARM architecture (2,380 additional
lines of C and assembly). MSM7201A-specific kernel de-
vice support for timers, serial ports, a simple framebuffer,
interrupts, GPIO pins, and keypad required another 1,690
lines of C. Cinder implements the GSM/GPRS/EDGE ra-
dio functionality in userspace with Android driver ports.

The Qualcomm chipset includes two ARM cores: the
ARM11 runs application code (Cinder), while a secure
ARM9 controls the radio and other sensitive features. The
two cores communicate over shared memory and inter-
rupt lines. To access these undocumented facilities, we
mapped the shared memory segment with a privileged
process and ported the Linux shared memory device to
userspace. This smdd daemon (4,756 lines) provides ser-
vices via gate calls to other consumers, including the radio
interface library (RIL).

In Android, the radio interface library consists of two
parts: an open source generic interface library that pro-
vides common radio functions regardless of hardware
platform, and a device-specific, Android-centric shared
object that interfaces with the modem hardware (libril.so).
Unfortunately, libril.so is closed-source and precompiled

5

for Android: this makes it excessively difficult to incor-
porate into another operating system. Without hardware
documentation or tremendous reverse engineering, using
the radio requires running this shared object in Cinder.
To do so, we wrote a compatibility shim layer to emulate
both Android’s “bionic” libc interface, as well as the var-
ious /dev devices it normally uses to talk to the ARM9
(1,302 lines of C). We rewrote the library’s symbol ta-
ble to link against our compatibility calls, rather than the
binary-incompatible uClibc functions and syscalls that
regular Cinder applications use. Finally, we wrote a port
of the radio interface library front-end that provides gates
that service requests.

Cinder currently supports the radio data path (IP), and
can send and receive SMS text messages. Cinder can also
initiative and receive voice calls, but as it does not yet have
a port of the audio library, calls are silent. In retrospect,
since hardware documentation is unavailable, basing our
solution on Android would have been far simpler from
a device support perspective. However, that would have
traded off the simplicity and accuracy of IPC resource ac-
counting in Cinder and the powerful security abstractions
inherited from HiStar. We felt that a cleaner slate justified
the additional burden and reduced functionality.

Operating the radio is a quite complicated, requiring
about 12,000 lines of userspace code along with the
263KB closed libril.so. In comparison, the entire Cin-
der kernel consists of about 27,000 lines of C for all four
CPU architectures and all device drivers. The kernel is
only 644KB - less than 2.5 times the size of libril.so.

4.2 HTC Dream Power Model
Energy accounting for a device as complex as the HTC
Dream is a difficult task, compounded by the closed nature
of the hardware. The closed ARM9 manages the state
of the most energy hungry, dynamic, and informative
components (e.g. GPS, radio, and battery sensors) and
provides limited visibility to the rest of the system. The
battery level, for example, is exposed to Cinder as an
integer from 0 to 100.

Cinder’s resource management mechanisms and poli-
cies are independent of its accounting mechanisms. Poor
accuracy means that Cinder may overestimate or under-
estimate system lifetime. Recent work on processors has
shown that fine-grained performance counters can enable
accurate energy estimates within a few percent [18, 7].
Without access to such state in the HTC Dream, how-
ever, we rely the simpler, well-tested technique based
on offline-measurement of device power states in a con-
trolled setting [11, 20, 12]. This is the common approach
used in phones today, and so has equivalent accuracy to
commodity applications.

We evaluated the Dream’s energy consumption during
various states and operations to understand the device’s

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30 35 40

J
o

u
le

s

Packets per Second

10 Second Flow Energy Usage Across Packet Sizes and Rates

1500 bytes/pkt
750 bytes/pkt

1 bytes/pkt

Figure 4: Radio data path power consumption for 10 second flows
across six different packet rates and three packet sizes. Short flows are
dominated by the 9.5J baseline cost shown in Figure 5. Data rate has
only a small effect on the total energy consumption. The average cost is
14.3J (minimum: 10.5, maximum: 17.6).

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300 350 400

W
a

tt
s

Seconds

Radio Activation Power Draw

Figure 5: Cost of transitioning from the lowest radio power state to
active. One UDP packet is transmitted approximately every 40 sec-
onds to enable the radio. The device fully sleeps after 20 seconds, but
the average interval consumes an additional 9.5J of energy (minimum
8.8J, maximum 11.9J). Power consumption for a stationary device can
often be predicted with reasonable accuracy, but outliers such as the
penultimate transition occur unpredictably.

behavior and statically model it. Our energy model is
a function of device states and duration to an estimated
amount of consumed energy. All measurements were
taken using an Agilent Technologies E3644A, a simple
DC power supply equipped with a current sense resistor
that can be sampled remotely via an RS-232 interface. We
sampled both voltage and current approximately every
200 ms, and aggregated our results from this data.

Our HTC Dream’s stock battery has a claimed capacity
of 1150 mAh, which at the device’s rated 3.7 V works out
to about 15 kJ. While idling in Cinder the Dream used
about 699 mW and another 555 mW when the backlight
was on. Spinning the CPU caused another 137 mW of
consumption. Our testing showed memory-intensive ap-
plications do increase power (a 13% increase over CPU
power while just spinning); however, quantifying mem-
ory accesses is difficult without hardware support, may
introduce significant overheads, and only has the poten-
tial to marginally increase the model accuracy. The ARM
processor also lacks a floating point unit, leaving us with
only integer, control flow, and memory instructions. For
these reasons, our CPU model currently does not take
instruction mix into account.

Data path power consumption is a particularly interest-
ing case in that the baseline cost of activating the radio
is very high. Small isolated transfers are therefore espe-
cially expensive. Unlike bulk transfers, they are unable to

6

amortize the radio power up cost. Figure 4 demonstrates
the cost of activating the radio and sending UDP packets
to an echo server that returns the same contents. Results
demonstrate that the overhead involved dominates the to-
tal power cost for flows lasting less than 10 seconds in
duration, regardless of the bitrate.

Figure 5 shows what this activation cost is. We power
up the radio by sending a single 1-byte UDP packet to
a sink host. The secure ARM9 controls the radio power
states and automatically returns to a low power mode
indistinguishable from our baseline power consumption
after 20 seconds of inactivity. Cinder is unable to con-
trol this state on our closed hardware platform and, as a
consequence, the inactivity timeout cannot be reduced.

The entire transition costs 9.5 Joules, making it espe-
cially expensive for short network transactions. It is desir-
able that applications coordinate their actions to amortize
their costs and use the network in as simultaneous a fash-
ion as possible. For example, if a set of applications that
each access the network only occasionally are staggered,
the effect on energy draw would be far more severe than
if they were coordinated. In Section 6.3 we demonstrate
how the abstractions presented in the previous section can
be used for exactly this purpose.

5 APPLICATIONS

In order to gain experience with Cinder’s abstractions
we developed a number of applications using reserves
and taps. This section describes the design of these ap-
plications including a task manager application that lim-
its the energy consumption of background applications,
a command-line utility that augments existing applica-
tions with energy policies, and an energy constrained web
browser that further isolates itself from its browser plug-
ins. We also discuss how Cinder could be used to reserve
energy, particularly for emergency phone use.

5.1 Background Applications
Background applications complicate resource manage-
ment on mobile phones substantially. Problematically,
despite not being visible to the user, an application may
still be using resources. This discontinuity between re-
ality and what the user perceives tends to make the user
suspicious of the foreground applications they have used
most frequently, which may not be the responsible ones.
Cinder provides not only a means to understand which
applications are using resources, but also a means to man-
age those resources to meet the user’s expectations. For
example, since the user naturally suspects foreground ap-
plications of using energy the user can easily understand
and manage their use of those applications. Cinder’s job,
then, is to manage background applications to prevent
them from interfering with the user’s natural intuition.

Figure 6: RSS is currently running in the foreground so the task manager
has set its tap to give it access to additional energy. Mail is running
in the background and can only draw energy from the background
reserve. This enforces that actual battery consumption matches the
user’s expectation that the visible application is responsible for most
energy consumption.

Figure 6 shows just how Cinder can accomplish this.
Each application has a reserve allocated to it from which
it draws energy. Also, each application’s reserve is con-
nected to two other reserves via taps. The first reserve is
the foreground reserve which is connected to the battery
via a high rate tap. The second is a low rate reserve con-
nected to the battery via a low rate tap. An application’s
tap to the background reserve always allows energy to
flow; however, the foreground tap is set to a rate of 0
while the application is running in the background and
is set to a high value when the application is running in
the foreground. A task manager is the creator of the tap
connecting the application to the foreground reserve and,
by default, is the only thread privileged to modify the pa-
rameters on the tap. Since programs are confined to low
power while in the background, the user’s expectations
are respected. Section 6.2 evaluates this configuration in
more detail.

5.2 energywrap

Taking advantage of the composability of Cinder’s re-
source graph, the energywrap utility allows any applica-
tion to be easily sandboxed even if it is buggy or malicious.
energywrap takes a rate limit and a path to an applica-
tion binary. The utility creates a new reserve and attaches
it to the reserve in which energywrap started by a tap
with the rate given as input. After forking, energywrap
begins drawing resources from the newly allocated re-
serve rather than the original reserve of the parent process
and then executes the specified program. This allows an
application, even if it is entirely energy-unaware, to be
augmented with energy policies.

The simple sandboxing policy provided by
energywrap is implemented in about 100 lines of
C++. An excerpt is shown in Figure 7. HiStar provides a
wrap utility designed to isolate applications with respect
to privileges and storage resources. Coupling this utility

7

// Create a reserve

object_id_t res_id;

res_id = reserve_create(container_id, res_label);

objref res = OBJREF(container_id, res_id);

// Create a tap and connect it between

// the battery and the new reserve

object_id_t tap_id;

tap_id = tap_create(container_id, root_reserve,

res, tap_label);

objref tap = OBJREF(container_id, tap_id);

// Limit the child to 1 mW

tap_set_rate(tap, TAP_TYPE_CONST, 1);

if (fork() == 0) {

// child process: switch to new reserve before exec

self_set_active_reserve(res);

execv(args[0], args);

}

Figure 7: energywrap excerpt without error handling.

Figure 8: A web browser configured to run for at least 6 hours on a
15kJ battery. The web browser further ensures that its plugin cannot use
more than 10% of its energy. 0.1x proportional taps prevent the browser
and the plugin from hoarding energy.

with energywrap allows any application or user to
provide a virtualized environment to other threads and
applications. Section 6.1 evaluates the effectiveness of
energy sandboxing and isolation.
energywrap has proved quite useful in implementing

policies while designing and testing Cinder, particularly
for legacy applications that have no notion of reserves or
taps. Since energywrap executes an arbitrary executable
it is possible to use energywrap to wrap invocations of
itself or shell scripts which may invoke energywrap with
other scripts or applications. This allows a wide class of
ad-hoc policies to scripted using standard shell scripting
or on-the-fly at the command line.

5.3 Fine-grained Control
Mobile web browsers now support plugins like Adobe
Flash [2] and we can expect more plugins and extensions
to follow. However, on a mobile device where resources
are precious it is especially important to have control over
how these plugins use resources.

In Cinder, a user may allocate some fixed rate or quota
of energy for web browsing using reserves and taps. The
web browser, then, may want to run a browser plugin
while ensuring the plugin cannot starve other plugins or
even the browser itself. The browser, as shown in Figure 8
allocates a separate reserve for the plugin and connects it

to its own energy via a low rate tap.
Often a single plugin (e.g. Flash) may be handling a

number of applications or requests all in a single process.
In order to easily scale the amount of energy given to the
plugin with the number of applications it is handling, the
browser can simply add an additional tap per application.
Then when a particular application is no longer being han-
dled (e.g. the user navigates away from the page) the taps
associated with that page can be automatically garbage
collected, effectively revoking those energy sources.

Cinder includes a simple graphical web browser based
on links2 that runs either in Xorg or standalone against the
framebuffer. The browser is augmented with an extension
running in a separate process whose resource usage is sub-
divided and isolated from the browser process itself. The
browser, then, can send requests to the extension process
(for ad blocking, etc.) and if the extension is unrespon-
sive due to lack of energy the browser can display the
unaugmented page.

5.4 Energy-Aware Applications
Resource consumption for applications can be limited
in Cinder by running the application within energywrap,
whether or not the application was written with Cinder’s
abstractions in mind. In addition, developers can use the
abstractions provided by Cinder to gain fine grained con-
trol of resource usage within their applications to provide
a better experience to end users.

For example, consider a GPS based application that
lets a user know his precise location, and as an extra
service pulls up location based information over the net-
work. When battery life is low, the user might prefer that
remaining energy be diverted towards location updates
and not expended on finding location based data. On a
platform that does not provide Cinder’s abstractions, the
application would need to present an interface to the user
that supports modifying the priority of each operation.
The user would need to use this interface each time he
wants to modify the resource consumption behavior of
the application, which is inconvenient. Alternatively, the
application could query battery status and automatically
limit the rate at which it makes network requests, solv-
ing the issue of convenience. However, controlling the
resource consumption of the resulting application relative
to other applications would still not be possible.

With Cinder, however, the developer could move the
GPS and network related operations to separate threads,
each possessing an independent reserve. The application
could dynamically assign resources to each thread based
on the resources available in its primary reserve. The re-
sulting application would possess the benefits of automat-
ically adapting its behavior based on available resources,
and its resource consumption relative to other applica-
tions would be controllable by means of modifying the

8

parameters of its primary reserve. Thus a Cinder-aware
application could reduce its overall energy usage while
still providing important data to the user without requiring
any ongoing configuration, while the Cinder platform en-
sures that it does not use up too many resources compared
to other applications on the device.

Another energy usage optimization can be made when
writing programs where the partial or degraded results of
a computation are still of use to the user, and offer a good
compromise between battery usage and user experience.
For example, the quality of streaming video viewed on the
phone can be scaled back, or texture quality in a game can
be reduced, when the energy available to the application
is low. Both outcomes are preferable to not being able
to watch a video or play a game at all when insufficient
resources are available to run the necessary computations
at full fidelity.

As a concrete example, we have implemented an energy
aware networked picture gallery viewer. The application
maintains a separate thread for downloading images off
of a server using a separate energy reserve. The main
application checks the levels in the downloader’s reserve
periodically. The rate of energy flowing into the reserve
could potentially be determined by system policy, by the
parent process of the application, or the user depending
on the exact use case. Energy flows out of the reserve at
a rate dependent upon the operations performed by the
application.

If the energy in the reserve drops below a threshold
value, the main thread signals the downloader thread to
obtain lower quality pictures. Note that a drop below the
threshold value signals that the rate at which the applica-
tion is expending energy is larger than the rate at which it
the system provides it with energy. In the current imple-
mentation, the downloader thread complies with such a
signal by requesting partial downloads of interlaced PNG
images which yield a lower quality image in exchange for
a smaller amount of bytes transferred over the network
(and thus lower energy consumption by the network de-
vice). Depending on the application, different approaches
can be used; for non-interlaced images the server might
store a lower resolution copy of the image that is served
instead, for example.

We performed tests with the application with energy-
sensitive image downloading enabled and disabled. Our
test case consisted of the application alternating between
downloading a batch of images and sleeping. Each image
in a batch was of similar size (approximately 2.7MB)
and each batch contained the same number of images.
Sleeping allowed the energy reserve for the download
thread to fill with more energy at a constant rate. The
first sleep cycle lasted for 40 seconds; the length of each
successive sleep cycle diminished by 5 seconds per cycle,
so a smaller amount of energy built up in the reserve after

 0

 50000

 100000

 150000

 200000

 0 50 100 150 200 250 300 350 400 450
 0

 100

 200

 300

 400

 500

 600

 700

 800

R
e
s
e
rv

e
 L

e
v
e
l
(m

ic
ro

jo
u
le

s
)

T
ra

n
s
fe

r
ra

te
 (

k
ilo

b
y
te

s
)

Time (seconds)

Reserve Level with Application Scaling

Figure 9: Image viewer with energy-aware scaling of image quality en-
abled. The orange line represents the energy in the downloader thread’s
reserve while the blue lines represent the amount of data downloaded.
As energy become scarce (the reserve empties), quality is lowered and
less data is downloaded per image.

 0

 50000

 100000

 150000

 200000

 0 500 1000 1500 2000 2500
 0

 100

 200

 300

 400

 500

 600

 700

 800

R
e
s
e
rv

e
 L

e
v
e
l
(m

ic
ro

jo
u
le

s
)

T
ra

n
s
fe

r
ra

te
 (

k
ilo

b
y
te

s
)

Time (seconds)

Reserve Level without Application Scaling

Figure 10: The same image viewer application as in Figure 9, but with-
out dynamic scaling of image quality. The experiment takes over five
times as long to complete within the energy budget since the application
cannot adapt to reduced available energy.

each batch was downloaded. The rate at which energy
was fed into the reserve was significantly smaller than the
rate at which energy was used by the application. The
test simulates a user loading a page of images, pausing a
while to view the images, and then requesting more. The
rate of energy flow into the download thread’s reserve is
low to simulate a low battery life environment. We track
the energy reserve levels, the amount of bytes transferred
over the network interface, the download time for each
batch of images and the average bytes transferred per
image over time.

The difference in behavior between the two operating
modes for the application is pronounced; when image
download requests are scaled in an energy aware fashion
as in Figure 9, the quality of images and bytes trans-
ferred for each image progressively drops as resources
are exhausted below the threshold point, while the time

9

Figure 11: About 5 minutes of talk time (250 J) worth of energy set
aside for an emergency call and transmission of the caller’s current
location. When the device detects an emergency call it sets the tap
feeding normal applications to 0 mW. The proportional tap prevents 911
from hoarding energy during normal operation.

per transfer per image slowly decreases since the amount
of bytes needed to transfer per image drops. Over the
course of the test, the level of energy present in the re-
serve dropped below the threshold but never to zero.

When image download sizes are not scaled back as in
Figure 10, the amount of bytes transferred stays constant
per batch. With each successive batch, the amount of
energy in the reserve at the start of the batch decreases
since the thread sleeps for a smaller amount of time after
downloading each batch. Thus the reserve runs out soon
after the start of each batch in this case, with the image
transfers stalling until enough energy is available to the
thread to continue. This yields a significantly larger run
time.

One can argue that the large runtime for the non-energy
aware application is due in part to the Cinder platform
purposely stalling it as it runs out of energy, while a non-
Cinder platform would run the application faster since
it wouldn’t be blocked by the reserve aware scheduling
mechanism. However, energy aware applications running
on Cinder could be both fast and use a lower amount
of energy while still providing an acceptable end user
experience. Energy-oblivious applications that must be
run in Cinder could still run at full speed even in low
battery situations if run in the root energy reserve of the
system; while that would sacrifice the energy management
features that Cinder brings to the table, it would not yield
battery life or performance any worse than running the
application on other platforms.

5.5 Emergencies
Figure 11 shows how Cinder could be used to ensure that
the device always has enough energy for a 5 minute emer-
gency phone call. The taps between the battery and emer-
gency reserve ensure the application always has 250 J set
aside. The amount set aside can be computed from the ca-
pacity of the battery and the rated talk time for the phone.
When an emergency call is placed the device clamps off
all other applications by setting the tap that feeds the rest
of the system to a rate of 0 mW. This guarantees not only
a 5 minute talk time, but also that the rest of the phone’s
applications cannot interfere or consume energy while an
emergency call is in progress. We have yet to implement
and evaluate this application.

Time (s)

0 10 20 30 40 50 60

E
st

.
P

o
w

e
r

(m
W

)

0

20

40

60

80

100

120

140

160

180

A

B

B1

B2

B forks B1

B forks B2

Figure 12: Stacked graph of Cinder’s software-estimated CPU power
during energy isolated process execution. Process A’s energy consump-
tion is isolated from other processes’ energy use despite B’s periodic
spawning of child processes (B1 and B2). The sum of the estimated
power of the individual processes closely matches the measured true
power consumption of the CPU of about 139 mW during this experi-
ment.

6 EVALUATION

Using the set of applications described in §2, we evaluate
whether Cinder can control power through subdivision,
delegation, and isolation as well as whether it provides
visibility into the energy and power of a running sys-
tem. Furthermore, by examining how applications use
the phone datapath, we evaluate whether Cinder can im-
prove a system’s energy efficiency by managing complex
devices with non-linear power consumption.

All experiments in this section are evaluated using
Cinder running on an HTC Dream. To measure power
draw, we connect the Dream to the Agilent E3644A DC
power supply. To monitor reserve energy levels we use
the Dream’s serial port output.

6.1 Isolation, Subdivision and Delegation:
Buggy and Malicious Applications

We first show how a very simple use case – preventing the
system from a buggy or malicious energy hog – requires
isolation, subdivision, and delegation. Figure 12 shows a
stacked plot of Cinder’s power consumption estimates of
two processes, A and B. Both are configured with separate
reserves and taps each at a rate high enough to utilize the
CPU at 50% apiece (about 68 mW each for the CPU
which costs 137 mW to spin).

Process B spawns a new child process at about 5 sec-
onds (B1) and again at about 10 seconds (B2). In a tra-
ditional system without reserves, limits, or some other
form of hierarchical resource container, these additional
processes would typically cause A to receive a smaller
share of the CPU. With Cinder, however, Process A is
isolated from these forks and still consumes about 50%
of the CPU (and energy share).

Rather than have B1 and B2 draw from B’s own reserve,

10

B creates two new reserves subdividing and delegating
its own power to each using two taps. Each of the two
taps is equal to one quarter of B’s tap, such that after
spawning both they are using half of its energy. This
shows that Process B is free to subdivide and delegate
energy from its reserve by creating new reserves, taps,
and child processes which are guaranteed to be unaffected
by Process A’s energy consumption. Figure 12 shows B1
and B2 enjoy their resources isolated from A.

6.2 Delegation and Subdivision: Background
Applications

Section 5.1 presented a configuration where system power
is subdivided into a high power task manager reserve and
a low power background reserve. These reserves delegate
their energy to applications running in the foreground and
background respectively. This delegation causes back-
ground applications to continue to make slow forward
progress but keeps foreground applications responsive.

We set up a reserve and tap graph identical to Figure 6.
We also use a similar graph that provides 300 mW in the
foreground instead of 137 mW to highlight the expected
behavior of applications with respect to the task manager.

Figure 13a shows two processes spinning on the CPU
while in the background. The background provides the
two of them 14mW, just enough to keep the 137mW CPU
at 10% utilization. At about 10 seconds the task manager
selects Process A as the foreground process, granting it
enough energy to fully utilize the CPU (137 mW). Process
B continues to run according to its background energy
share of 14mW. At the 20 second mark the task manager
retires Process A to the background by setting its fore-
ground tap rate to 0 mW. At 30 seconds the task manager
gives Process B access to the foreground resources and,
similarly, returns it to the background at 40 seconds.

Figure 13b is the same configuration when foreground
gives 300 mW of foreground energy. Because 300mW
is greater than the CPU cost of 137mW, applications in
the foreground can accumulate excess energy. The two
processes move in and out of the foreground in the same
way as before, but this accumulated energy changes their
behavior. When B is moved to the foreground. A still has
plenty of energy, and so competes with B for the CPU,
such that each receives a 50% share. After A exhausts its
energy, it returns to its original 14mW. Shortly thereafter,
B moves to the background as well. But just as A did, it
accumulated energy during its time in the foreground and
so is able to use ≈90% of the CPU until it exhausts its
reserve.

The system-wide half-life both caps the total energy
hoarding possible during foreground operation and re-
turns applications to the natural background energy level
over a several minute period. This allows a process to per-
form an elevated amount of work briefly after returning to

Time (s)

0 10 20 30 40 50 60

E
st

.
P

o
w

e
r

(m
W

)

0

20

40

60

80

100

120

140

160

180

A B

A in foreground
B in foreground

(a)

Time (s)

0 10 20 30 40 50 60

E
st

.
P

o
w

e
r

(m
W

)

0

20

40

60

80

100

120

140

160

180

A

B

A in foreground
B in foreground

(b)

Figure 13: Stacked graph of Cinder’s software-estimated CPU power
as processes A and B both spin on the CPU. Together they are allowed
14 mW while in the background. The task manager runs A in the
foreground in the 10 - 20 second interval and B in the foreground during
the 30 - 40 second interval. (a) shows the results for the foreground
process with 137 mW (the precise cost of using the CPU at 100%). (b)
shows the foreground process with 300 mW. The dotted line shows
actual power measurements compensated for baseline power draw with
an idle CPU and averaged over 1 second intervals.

background status provided it underutilized its resources
while in the foreground.

6.3 Delegation: Cooperative Networking Stack
Some of the most energy-hungry devices on a mobile
device have complex, non-linear power models (e.g. the
data path and the GPS). Cinder’s abstractions, particularly
reserves and gates, readily allow sophisticated policies
that can reduce overall system energy consumption with
such devices through delegation.

Section 4.2 showed the radio has a high initial cost
and a much smaller amortized price for bulk transfers.
This power profile is a problem for many background
applications like email checkers, RSS feed downloaders,
weather widgets, and time synchronization daemons.

Cinder can solve this problem using reserves and taps.
The networking stack, netd, contains a reserve that saves
energy for a radio power up event. If a thread makes a
network system call but the sum of it and netd’s reserve
are not sufficient, the call blocks. Blocked threads con-
tribute joules acquired by their taps to the communal netd
reserve. When there is sufficient energy to turn the radio

11

Figure 14: The mail checker and RSS feed downloader are constrained
to use up to 37.5 mW apiece. When making network requests, netd
transfers energy from their reserves into its own reserve. Once the
requesting application’s reserve combined with the netd reserve have
enough energy the radio will turn on. This simple policy helps synchro-
nize applications’ network access, reducing active radio time and saving
energy.

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000 1200

W
a

tt
s

Seconds

Uncooperative Radio Access

Figure 15: Two background applications, a pop3 mail and an RSS
fetcher, each poll every sixty seconds. Since they are not coordinated,
their use of the radio is staggered, resulting in increased power con-
sumption. Each application uses the radio for at most a few seconds, but
neither takes advantage of the other having brought the radio out of the
low power idle state.

on and perform the system call, Cinder debits the reserve
and permits the thread to proceed. The netd reserve is
not subject to the system global half-life, as the process is
trusted and only ever stores enough energy to activate the
radio.

Cinder estimates the cost of radio access by tracking
when network transmit and receive events occurred. For
instance, if the radio has been idle for 20 seconds or
more, threads wishing to use the network must contribute
enough energy to turn the radio on and maintain the active
power state until it again idles. Once the radio is on,
however, additional operations are billed in proportion
to the active period. That is, back-to-back actions are
cheaper than ones with more delay between them because
they extend the active period (delay the next idle period)
less significantly.

For example, if the radio has been active for one sec-
ond, it will automatically idle again 19 seconds later, so
transmitting now only extends the active period by 1 sec-
ond. However, if the radio is active but no packets have
been sent or received for 15 seconds, transmitting now
will extend the active period by an additional 15 seconds -
a much costlier proposition.

Multiple applications can take advantage of the high
initial cost/low amortized cost property by synchroniz-

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000 1200

W
a

tt
s

Seconds

Cooperative Radio Access Using Reserves and Limits

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200

J
o

u
le

s

Seconds

netd Reserve Level Over Time

Figure 16: Top: The same mail and RSS background applications
using reserves and limits to coordinate their access to the radio data
path. Enough energy is allocated to each application to turn the radio
on every two minutes. By pooling their resources, they are able to
turn the radio on at most every sixty seconds. Bottom: The level of
the reserve into which the two background applications transfer their
allotted joules. When the reserve reaches a level sufficient to pay for the
cost of transitioning the radio to the active state, it is debited, the radio
is turned on, and the processes proceed to use the network. Although
Figure 5 showed an average 9.5J cost to power up the radio, netd requires
125% of this level before turning the radio on, essentially mandating
that applications have extra energy to transmit and receive subsequent
packets. Therefore, the reserve does not empty to 0.

ing their network accesses so as to effectively pool their
energy resources. That is, they can do more work at
lower cost in a manner reminiscent of low-power link lay-
ers [17]. We run two experiments: one with unrestricted
energy consumption, and the other using Cinder’s abstrac-
tions and modified netd stack. In both experiments, an
RSS feed downloader starts with a poll interval of 60
seconds. Fifteen seconds later, a mail fetcher daemon
starts, also with a 60 second poll interval. The second
experiment uses the configuration shown in Figure 14.
Both applications are provided enough energy to power
up the radio every 60 seconds, if they work in unison.

Figure 15 shows the uncooperative applications wast-
ing energy unnecessarily – each runs when the radio is
idle and powers it up independently. Neither combine
their efforts to amortize costs.

In comparison, Figure 16 shows what happens when
the applications have constrained taps. Each application
receives enough energy to activate the radio every two
minutes. However, when they initiate network operations,
their threads block in netd and contribute acquired energy
to the radio activation pool (bottom of Figure 16). Every
60 seconds, enough energy has been saved to use the
radio and both applications proceed simultaneously. This
opportunistic schedule is similar to the low-power SP link
layer [17], although Cinder is much more powerful: SP
only seeks to minimize cost and does not actually control
or limit energy consumption.

12

Non-Coop Coop Improv
Total Time 1201s 1201s N/A

Total Energy 1238J 1083J 12.5%
Active Time 949s 510s 46.3%

Active Energy 1064J 594J 44.2%

Table 1: Improvements in energy consumption and radio active state
time using cooperative resource sharing in Cinder. Energy use due to the
radio is significantly reduced, resulting in a 12.5% total system power
reduction over the 20 minute experiment.

Figure 15 and the top of Figure 16 shows the indepen-
dent and shared radio activation events. By supporting
delegation, Cinder allows two independent applications
to collaboratively improve quality of service by a factor
of two while remaining in their respective power budgets.

This automatic collaboration doubles quality of service
while actually spending less energy (each daemon would
alone be only able to afford network access every 120
seconds). Table 1 shows the power savings of using Cin-
der’s abstractions. In total, 12.5% less energy is used
in the same time interval for an equivalent amount of
work. While 12.5% is significant, we stress that in such
background application examples, our baseline power
consumption is artificially dominant as Cinder does noth-
ing to place the hardware into lower power states while
idle. We therefore expect Cinder to provide even greater
improvement on a mature mobile platform that makes full
use of the chipset’s power savings features.

7 RELATED WORK

We group related work into three categories: resource
management, energy accounting, and energy efficiency.

7.1 Resource Management
Cinder’s taps and reserves build on the abstraction of
resource containers [5]. Like resource containers, they
provide a platform for attributing resource consumption to
a specific principal. By separating resource management
into rates and quantities, however, Cinder allows appli-
cations to delegate with reservations yet reclaim unused
resources. This separation also makes policy decisions
much easier. As resource containers serve both as limits
and reservations, hierarchical composition either requires
a single policy (limit or reserve) or ad-hoc rules (a guaran-
teed CPU slot cannot be the child of a CPU usage limit).

Linux has recently incorporated “cgroups” [16] into the
mainline kernel, which are similar to resource containers
but group processes rather than threads. They are hierar-
chical and rely on “subsystem” modules which schedule
particular resources (CPU time, CPU cores, memory).

ECOSystem [20, 21] presents an abstraction for energy,
“currentcy”, which unifies a system’s device power states.
It represents logical tasks using a flat form of resource

containers [5] by grouping related processes in the same
container. This flat approach makes it impossible for an
application to delegate, as it must either share its container
with a child or put it in a new container that competes
for resources. Like ECOSystem, Cinder estimates en-
ergy consumption with a software-based model that ties
runtime power states to power draw.

7.2 Measurement, Modeling, and Accounting
Accurately estimating a device’s energy consumption
is an ongoing area of research. Early systems such as
ECOSystem [20] use a simple linear combination of de-
vice states. Most modern phone operating systems, such
as Symbian and OS X, follow this approach.

PowerScope improves CPU energy accuracy by corre-
lating instrumented traces of basic blocks with program
execution [11]. A more recent system, Koala, explores
how modern architectures can have counter-intuitive en-
ergy/performance tradeoffs, presenting a model based
on performance counters and other state [18]. A Koala-
enabled system can use these estimates to specify a range
of policies, including minimizing energy, maximizing per-
formance, and minimizing the energy-delay product. The
Mantis system achieves similar measurement accuracy to
Koala using CPU performance counters [7].

Quanto [12] extends the TinyOS operating system to
support fine-grained energy accounting across activities.
Using a custom measurement circuit, Quanto generates an
energy model of a device and its peripherals using a linear
regression of power measurements. By monitoring the
power state of each peripheral and dynamically tracking
which activity is active, Quanto can give very precise
breakdowns of where a device is spending energy.

Cinder complements this work on modeling and ac-
counting. Improved hardware support to determine where
energy is going would make its accounting and resource
control more accurate. On top of these models, Cinder
provides a pair of abstractions that allow applications and
users to flexibly and easily enforce a range of policies.

7.3 Energy Efficiency
There is rich prior work on improving the energy effi-
ciency of individual components, such as the voltage
and frequency scaling a CPU [9, 13], spinning down
disks [6, 14], or carefully selecting memory pages [15].
Phone operating systems today tend to depend on much
simpler but still effective optimization schemes than in
the research literature, such as hard timeouts for turning
off devices. The exact models or mechanisms used for
energy efficiency are orthogonal to Cinder: they allow
applications to complete more work within a given power
budget. The image viewer described in §5.4 is an exam-
ple of an energy-adaptive application, as is typical in the
Odyssey system [10].

13

8 FUTURE WORK

We believe that the reserve and tap abstractions may be
fruitfully applied to other resource allocation problems be-
yond energy consumption. For instance, the high cost of
mobile data plans makes network bits a precious resource.
Applications, whether they be buggy, malicious, or simply
poorly implemented, should not be able to run up a user’s
bill due to expensive data tariffs, just as they should not
be able to run down the battery unexpectedly. Since data
plans are frequently offered in terms of megabyte quotas,
Cinder’s mechanisms could be repurposed to limit ap-
plication network access by replacing the logical battery
with a pool of network bytes. Reserves could also act as
quotas on text messages sent by a particular application.

Using the HTC Dream’s limited battery level informa-
tion Cinder could adapt its energy model based on past
component and application usage, dynamically refining
its costs. Though Cinder can easily facilitate this and
we have made some adjustments to test this, evaluating
the complex and dynamical system this would yield will
require additional research.

Since we engineered the system, we did not find it un-
natural to construct our examples and experiments using
joule and watt units. However, we do not expect users
and application developers to interact with the system in
this way. By taking into account power model profiles
for mobile devices, we expect to automatically derive
the power and energy quantities necessary. Users should
only need to to think in terms of minutes, network bytes,
percentages of battery reserved, etc.

Finally, being a working Unix-like environment, Cin-
der is a candidate to run the Android platform in place
of the Linux kernel. Since most of the facilities in An-
droid are provided through the dalvik virtual machine
Cinder would only have to satisfy a narrow interface to
support the thousands of applications that consumers en-
joy through Android Market.

9 CONCLUSION

Cinder is an operating system for modern mobile devices.
It uses techniques similar to existing systems to model
device energy use, while going beyond the capabilities
of current operating systems by providing an IPC sys-
tem that fundamentally accounts for resource usage on
behalf of principals. It extends this accounting to add
subdivision and delegation using its reserve and tap ab-
stractions. We have described and applied this system to a
variety of applications demonstrating, in particular, their
ability to partition applications to energy bounds even
with complex policies. Additionally, we showed Cinder
facilitates policies which enable efficient use of expensive
peripherals despite non-linear power models.

REFERENCES

[1] The executive computer; compaq finally makes a
laptop. http://www.nytimes.com/1988/10/
23/business/the-executive-computer-

compaq-finally-makes-a-laptop.html.

[2] Adobe and HTC Bring Flash Platform to Android,
June 2009. http://www.adobe.com/
aboutadobe/pressroom/pressreleases/

pdfs/200906/062409AdobeandHTC.pdf.

[3] Apple Previews iPhone OS 4, Apr. 2010.
http://www.apple.com/pr/library/2010/

04/08iphoneos.html.

[4] Security and permissions, Apr. 2010.
http://developer.android.com/guide/

topics/security/security.html.

[5] G. Banga, P. Druschel, and J. C. Mogul. Resource
containers: a new facility for resource management
in server systems. In OSDI ’99: Proceedings of the
third symposium on Operating systems design and
implementation, pages 45–58, Berkeley, CA, USA,
1999. USENIX Association.

[6] F. Douglis, P. Krishnan, and B. N. Bershad.
Adaptive disk spin-down policies for mobile
computers. In MLICS ’95: Proceedings of the 2nd
Symposium on Mobile and Location-Independent
Computing, pages 121–137, Berkeley, CA, USA,
1995. USENIX Association.

[7] D. Economou, S. Rivoire, and C. Kozyrakis.
Full-system power analysis and modeling for server
environments. In In Workshop on Modeling
Benchmarking and Simulation (MOBS), 2006.

[8] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole.
Exokernel: An operating system architecture for
application-level resource management.

[9] K. Flautner and T. Mudge. Vertigo: automatic
performance-setting for linux. In OSDI ’02:
Proceedings of the 5th symposium on Operating
systems design and implementation, pages 105–116,
New York, NY, USA, 2002. ACM Press.

[10] J. Flinn and M. Satyanarayanan. Energy-aware
adaptation for mobile applications. In SOSP ’99:
Proceedings of the seventeenth ACM symposium on
Operating systems principles, pages 48–63, New
York, NY, USA, 1999. ACM.

[11] J. Flinn and M. Satyanarayanan. Powerscope: A
tool for profiling the energy usage of mobile
applications. In WMCSA ’99: Proceedings of the

14

Second IEEE Workshop on Mobile Computer
Systems and Applications, page 2, Washington, DC,
USA, 1999. IEEE Computer Society.

[12] R. Fonseca, P. Dutta, P. Levis, and I. Stoica.
Quanto: Tracking energy in networked embedded
systems. In R. Draves and R. van Renesse, editors,
OSDI, pages 323–338. USENIX Association, 2008.

[13] K. Govil, E. Chan, and H. Wasserman. Comparing
algorithm for dynamic speed-setting of a low-power
cpu. In MobiCom ’95: Proceedings of the 1st
annual international conference on Mobile
computing and networking, pages 13–25, New
York, NY, USA, 1995. ACM Press.

[14] D. P. Helmbold, D. D. E. Long, and B. Sherrod. A
dynamic disk spin-down technique for mobile
computing. In MobiCom ’96: Proceedings of the
2nd annual international conference on Mobile
computing and networking, pages 130–142, New
York, NY, USA, 1996. ACM Press.

[15] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power
aware page allocation. In ASPLOS-IX: Proceedings
of the ninth international conference on
Architectural support for programming languages
and operating systems, pages 105–116, New York,
NY, USA, 2000. ACM Press.

[16] P. Menage. cgroups, Oct. 2008.
http://git.kernel.org/?p=linux/kernel/

git/torvalds/linux-2.6.git;a=blob;f=

Documentation/cgroups/cgroups.txt;hb=

b851ee7921fabdd7dfc96ffc4e9609f5062bd12.

[17] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler,
S. Shenker, and I. Stoica. A unifying link
abstraction for wireless sensor networks. In SenSys

’05: Proceedings of the 3rd international conference
on Embedded networked sensor systems, pages
76–89, New York, NY, USA, 2005. ACM Press.

[18] D. C. Snowdon, E. Le Sueur, S. M. Petters, and
G. Heiser. Koala: a platform for os-level power
management. In EuroSys ’09: Proceedings of the
4th ACM European conference on Computer
systems, pages 289–302, New York, NY, USA,
2009. ACM.

[19] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation,
pages 263–278, Seattle, WA, November 2006.

[20] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat.
Ecosystem: managing energy as a first class
operating system resource. In ASPLOS-X:
Proceedings of the 10th international conference on
Architectural support for programming languages
and operating systems, pages 123–132, New York,
NY, USA, 2002. ACM.

[21] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat.
Currentcy: A unifying abstraction for expressing
energy management policies. In In Proceedings of
the USENIX Annual Technical Conference, pages
43–56, 2003.

15

