
September 2012 | vol. 55 | no. 9 | communications of the acm 103

doi:10.1145/2330667.2330691

CryptDB: Processing Queries
on an Encrypted Database
By Raluca Ada Popa, Catherine M.S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan

1. INTRODUCTION
Theft of private information is a significant problem for
online applications. For example, a recent investigation
found that at least eight million people’s medical records
were stolen as a result of data breaches between 2009
and 2011,13 and in a recent attack on the Sony Playstation
Network, attackers apparently gained access to about 77
million personal user profiles, some of which included
credit card information.20 Such large-scale data thefts
make the popular press, but smaller-scale compromises
occur on a nearly daily basis, according to organizations
devoted to studying consumer and data privacy (e.g., the
Privacy Rights Clearinghouse).

Sensitive data can leak from online data repositories for a
variety of reasons: an adversary can exploit software vulner-
abilities to gain unauthorized access to servers,15 curious or
malicious administrators at a hosting provider can snoop on
private data,3 and attackers with physical access to servers
can steal data from disk and memory.11

One approach to reduce the damage caused by server
compromises is to encrypt all sensitive data stored on the
servers. However, many important applications, includ-
ing database-backed Web services that process SQL que-
ries, as well as analytic applications that compute results
over large quantities of data, require servers to not just
store data, but also perform computations on the data.
One solution could be to store the data encrypted at
the server, but to perform all computation at a trusted
client on plaintext by downloading and decrypting all
needed data for every computation; this approach, how-
ever, is usually untenable because there might be too
much data to move around, or because clients may have
significantly less computation or storage resources than
the server.

An ideal solution to satisfying the dual goals of protect-
ing data confidentiality and running computations is to
enable a server to compute over encrypted data, without
the server ever decrypting the data to plaintext. The server
would produce results in an encrypted form, decryptable
only by a trusted client. This approach would preserve the
architecture of running much of the application’s computa-
tion at the server.

Theoretical approaches such as fully homomorphic
encryption7 enable the server to compute arbitrary functions
over encrypted data, while providing excellent confidential-
ity guarantees. But despite good progress in recent years,
these schemes remain many orders of magnitude slower
than equivalent plaintext computations (e.g., computing
the decryption circuit for AES—the Advanced Encryption
Standard6 is at least 109 times slower8).

We introduce CryptDB, a practical system that explores
an intermediate design point to provide confidentiality
for applications that use database management systems
(DBMSes). CryptDB is the first practical system that can
execute a wide range of SQL queries over encrypted data.
The key insight that makes our approach practical is that
most SQL queries use a small set of well-defined opera-
tors, each of which we are able to support efficiently over
encrypted data.

CryptDB addresses two threats, as illustrated in
Figure 1. The first threat is an adversary who gains access to
the DBMS server and tries to learn private data (e.g., health
records, financial statements, and personal information)
by snooping on the server. This threat might arise when an
attacker exploits some vulnerability to directly get to the
DB server, when the database is outsourced to an external
organization (e.g., a public “cloud”), or when the DBMS is
administered by a curious system or database administra-
tor (DBA) who might not be trusted. CryptDB aims to pre-
vent the adversary from learning private data in this case.
The second threat is an adversary who gains complete con-
trol of the application and the DBMS servers. In this case,
CryptDB protects the confidentiality of the data belong-
ing only to users logged-out of the application during an
attack, but cannot provide any guarantees for logged-in
users. This paper focuses primarily on the solution to the
first threat; our SOSP paper18 details the additional mecha-
nisms that address the second threat.

CryptDB requires no changes to the internals of the
DBMS server, and should work with most standard SQL
DBMSes. Our implementation uses a MySQL back-end.
Our experiments show that the overhead of CryptDB is
modest: throughput reduces by only 26% for queries from
the standard TPC-C benchmark, and by only 14.5% for
a multiuser bulletin board application (phpBB),18 com-
pared to running them over MySQL without encryption.
We find that CryptDB supports most queries observed
in practice: an analysis of 126 million SQL queries from
an MIT MySQL service showed that CryptDB supports
operations over encrypted data for 99.5% of the 128,840
columns seen in the query trace.

2. THREAT MODEL AND OVERVIEW
In this section, we discuss CryptDB’s threat model and pro-
vide an overview of our approach.

A previous version of this paper was published in the
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles, October 2011.

104 communications of the acm | September 2012 | vol. 55 | no. 9

research highlights

CryptDB is careful about what relations between tuples it
reveals to the DBMS server. To execute a GROUP BY on column c,
for instance, the server need not know the order of the items
in column c, nor any information about other columns. To
execute an ORDER BY, or to find the MAX or MIN, CryptDB
reveals the order of items in that column, but not otherwise.

CryptDB incorporates two techniques: SQL-aware encry
ption and adjustable query-based encryption. SQL-aware
encryption uses the observation that most SQL queries
are made up of a well-defined set of basic operators, such
as equality checks, order comparisons, aggregates (sums),
and joins. CryptDB supports these operators over encrypted
data. By adapting known encryption schemes (for equality,
additions, and order checks), and using a new privacy-
preserving cryptographic scheme for joins, CryptDB encry
pts each data item in a way that allows the DBMS to execute
on the transformed data.

The second technique is adjustable query-based encryp-
tion: CryptDB carefully adjusts the SQL-aware encryption
scheme for any given data item to support different opera-
tions on this data. To implement these adjustments effi-
ciently, CryptDB uses onions of encryption. Onions are a novel
way to compactly store multiple ciphertexts within each
other in the database and avoid revealing weaker encryption
schemes when they are not needed.

CryptDB provides confidentiality for the content of the
data and for names of columns and tables, but does not
hide the overall table structure, the number of rows, the
types of columns, or the approximate size of data in bytes.
The only information that CryptDB reveals to the DBMS
server is relationships among data items correspond-
ing to classes of computation that queries perform on the
database, such as comparing items for equality, sorting, or
performing word search. The granularity at which CryptDB
allows the DBMS to perform a class of computations is an
entire column (or a group of joined columns, for joins),
which means that even if a query requires equality checks
for a few rows, executing that query on the server would
require revealing that class of computation for an entire
column. Section 3.1 describes how these classes of com-
putation map to CryptDB’s encryption schemes, and the
information they reveal.
CryptDB provides the following properties:

2.1. Threat 1: DBMS server compromise
CryptDB provides confidentiality (data secrecy) in the face
of an attacker with full read access to the data stored in
the DBMS server. The attacker is assumed to be passive:
she wants to learn confidential data, but does not change
queries issued by the application, query results, or the data
in the DBMS. This threat includes DBMS software compro-
mises, root access to DBMS machines, and even access to
the RAM of physical machines. With the rise in database
consolidation inside enterprise data centers, outsourcing
of databases to public cloud computing infrastructures,
and the use of third-party DBAs, this threat is increasingly
important. We focus on confidentiality, not data integrity
or availability.

CryptDB addresses this threat by executing SQL que-
ries over encrypted data on the DBMS server. As shown in
Figure 1, CryptDB works by intercepting all SQL queries
in a trusted proxy; existing applications do not need to be
modified to use CryptDB, but all queries must go through
the proxy. The proxy stores a master secret key, which
it uses to rewrite queries to execute on encrypted data.
The proxy encrypts and decrypts all data, and changes
some query operators, while preserving the semantics of
the query. Because the DBMS server never receives decryp-
tion keys to the plaintext, it never sees sensitive data,
ensuring that our passive adversary cannot gain access to
private information.

The main challenge when executing queries on encryp
ted data lies in the tension between minimizing the
amount of confidential information revealed to the
DBMS server and the ability to efficiently execute a vari-
ety of queries. Our strategy is to allow the DBMS server to
perform query processing on encrypted data mostly as it
would on an unencrypted database (important for practi-
cality), while restricting the server to computing only the
functions required to process authorized queries (important
for confidentiality). For example, if the DBMS needs to
perform a GROUP BY on column c, the DBMS server should
be able to determine which items in that column are equal
to each other, but not the actual content of each item.
Therefore, the proxy needs to enable the DBMS server to
determine relationships among data items necessary to
process a query.

Figure 1. CryptDB’s architecture consisting of two parts: a proxy and an unmodified DBMS. CryptDB uses user-defined functions (UDFs)
to perform cryptographic operations in the DBMS. Rectangular and rounded boxes represent processes and data, respectively. Shading
indicates components added by CryptDB. Dashed lines indicate separation between users’ computers, the application server, a server
running CryptDB’s proxy (which is usually the same as the application server), and the DBMS server. The scope of the two threats CryptDB
addresses is shown as dotted lines.

User 1

Application

DBMS server

Key setup

Password P1

Data
(encrypted)

Unmodified DBMS CryptDB UDFs

Application serverUsers' computers

Threat 1

User 2

Password P2

Active
session

Threat 2

Proxy

Active keys:
P1

Annotated
schema

CryptDB proxy

September 2012 | vol. 55 | no. 9 | communications of the acm 105

•  Sensitive data is never available in plaintext at the
DBMS server.

•	 If the application requests no relational predicate
filtering on a column, nothing about the data content
leaks (other than its size in bytes). In Section 5, we show
that all or almost all of the most sensitive fields in the
tested applications are in this category.

•	 If the application requests equality checks on a col-
umn, CryptDB’s proxy reveals which items repeat in
that column, but not the actual values.

•	 If the application requests order checks on a column, the
proxy reveals the order of the elements in the column.

2.2. Threat 2: arbitrary threats
The approach in threat 1 is insufficient when the application
server, the proxy, and the DBMS server infrastructure may all
be arbitrarily compromised. The reason is that an adversary
corrupting the proxy can now get access to the master key
used to encrypt the entire database.

The solution is to use the SQL-aware and adjustable
encryption techniques, but not with a single master key.
Instead, we use per-user keys, derived from the user’s pass-
word, each having access to only a subset of the data.

A challenge is that simply encrypting each user’s data
with that user’s password does not work because users
may share data. To permit data sharing, we encrypt each
data item with a new key, and chain these new keys to user
passwords, so that each data item can be decrypted only
through a chain of keys rooted at the password of a user
with legitimate access to that data. To construct a chain of
keys that captures the application’s data privacy and shar-
ing policy, CryptDB requires the developer to provide pol-
icy annotations over the application’s SQL schema.

Because queries still execute over encrypted data, the
passive adversary of threat 1 remains at bay. In addition,
even in the face of arbitrary server-side compromises,
CryptDB protects the data of users logged out for the dura-
tion of an attack, since none of the components compro-
mised by this attack have access to the keys of those users.
However, an adversary that compromises the application
server or proxy can gain access to data of users logged in
during the attack, by obtaining their keys. By “duration of
an attack,” we mean the interval from the start of a com-
promise until any trace of the compromise has been erased
from the system.

3. QUERIES OVER ENCRYPTED DATA
This section describes how CryptDB executes SQL queries
over encrypted data in the face of the threat described in
Section 2.1.

The CryptDB proxy stores a secret master key MK, the
database schema, and the current encryption layer of each
column. The DBMS server sees an anonymized schema (in
which table and column names are replaced by opaque
identifiers), encrypted user data, and some auxiliary tables
used by CryptDB. CryptDB also equips the server with cer-
tain user-defined functions (UDFs) that enable the server to
compute on ciphertexts for certain operations.
Processing a query in CryptDB involves four steps:

1.	 The application issues a query, which the proxy
intercepts and rewrites: it anonymizes each table
and column name, and, using the master key MK,
encrypts each constant in the query with an encryp-
tion scheme best suited for the desired operation
(Section 3.1). The proxy also replaces certain opera-
tions with UDFs.

2.	 The proxy checks if the DBMS server should be given
keys to adjust encryption layers before executing the
query, and if so, issues an UPDATE query at the DBMS
server, which invokes a UDF to adjust the encryption
layer of the appropriate columns (Section 3.2).

3.	 The proxy sends the encrypted query to the server,
which executes it.

4.	 The server returns the encrypted query result, which
the proxy decrypts and returns to the application.

3.1. SQL-aware encryption
We now describe the encryption methods used in CryptDB,
including a number of existing cryptosystems and a new cryp-
tographic primitive for joins. For each encryption method,
we explain the security property that CryptDB requires from
it, its functionality, and how it is implemented.

Random (RND). RND provides the maximum security in
CryptDB: indistinguishability under an adaptive chosen-
plaintext attack (IND-CPA). This scheme is probabilistic,
meaning that two equal values are mapped to different cipher-
texts with high probability. On the other hand, RND does not
allow any computation to be performed efficiently on the
ciphertext. An efficient construction of RND is to use a block
cipher like advanced encryption standard (AES)6 or Blowfish
in CBC mode together with a random initialization vector (IV).
(We mostly use AES, except for integer values, where we use
Blowfish for its 64-bit block size because the 128-bit block size
of AES would cause the ciphertext to be significantly longer.)

Deterministic (DET). DET enables the server to learn which
encrypted values correspond to the same data value, by
deterministically generating the same ciphertext for the
same plaintext. Therefore, this encryption layer allows
the server to perform equality checks, which means it can
perform selects with equality predicates, equality joins,
GROUP BY, COUNT, DISTINCT, etc.

In cryptographic terms, DET should be a pseudo-random
permutation (PRP).9 We use Blowfish or AES in CMC mode10
to implement DET.

Order-preserving encryption (OPE). OPE allows the server
to determine order relations between data items based on
their encrypted values, without revealing the data itself. If
x < y, then OPEK (x) < OPEK ( y), for any secret key K. Therefore,
if a column is encrypted with OPE, the server can perform
range queries when given encrypted constants OPEK (c1) and
OPEK(c2) corresponding to the range [c1, c2]. The server can
also perform ORDER BY, MIN, MAX, SORT, etc.

OPE is a weaker encryption scheme than DET because
it reveals order. Thus, the CryptDB proxy will only reveal

106 communications of the acm | September 2012 | vol. 55 | no. 9

research highlights

need an adaptive scheme that dynamically adjusts encryp-
tion strategies.

CryptDB’s adjustable query-based encryption technique
solves this problem by dynamically adjusting the layer of
encryption on the DBMS server. The idea is to encrypt each
data item in one or more onions: that is, each value is dressed
in layers of increasingly stronger encryption, as shown in
Figures 2 and 3. Each layer of each onion enables a certain
class of computation, as explained earlier.

Multiple onions are required because the computations
supported by different encryption schemes are not always
strictly ordered. Depending on the type of the data, CryptDB
may not maintain all onions for each column. For instance,
the Search onion does not make sense for integers, and the
Add onion does not make sense for strings.

For each layer of each onion, the proxy uses the same
key for encrypting values in the same column, and differ-
ent keys across tables, columns, onions, and onion layers.
Using the same key for all values in a column allows the
proxy to perform operations on a column without having
to compute separate keys for each row that will be manip-
ulated. Using different keys across columns prevents the
server from learning any additional relations. All of these
keys are derived from the master key MK. For example, for
table t, column c, onion o, and encryption layer l, the proxy
uses the key

	 Kt,c,o,l = PRPMK (table t, column c, onion o, layer l ),� (1)

where PRP is a pseudorandom permutation (e.g., AES).
Each onion starts out with the most secure encryption

scheme as the top level (RND for onions Eq and Ord, HOM
for onion Add, and SEARCH for onion Search). As the proxy
receives SQL queries from the application, it determines
whether layers of encryption need to be removed. If a query
requires predicate P on column c, the proxy first establishes
what onion layers are needed to compute P on c. If the
encryption of c is not already at an onion layer that allows P,
the proxy strips off the onion layers to allow P on c, by send-
ing the corresponding onion key to the server. The proxy
never decrypts the data past the least-secure non-plaintext
encryption onion layer, which may be overridden by the
schema developer to be a more secure layer (e.g., one may

OPE-encrypted columns to the server if users request order
queries on those columns. OPE is proven to be equivalent
to a random mapping that preserves order.1 However, such
a mapping leaks half of the data bits in the worst case.2 We
are currently working on a new scheme that provably reveals
only order and leaks no bits in addition.

Homomorphic encryption (HOM). HOM is as secure a prob-
abilistic encryption scheme as RND, but allows the server
to perform computations on encrypted data with the final
result decrypted at the proxy. Although fully homomorphic
encryption is prohibitively slow, homomorphic encryption
for specific operations is efficient. To support additions, we
implemented the Paillier cryptosystem.17 With Paillier, mul-
tiplying the encryptions of two values results in an encryp-
tion of the sum of the values, that is, HOMK (x) · HOMK ( y) =
HOMK (x + y), where the multiplication is performed modulo
some public-key value. To compute SUM aggregates, the proxy
replaces SUM with calls to a UDF that performs Paillier multi-
plication on a column encrypted with HOM. HOM can also be
used to compute averages by having the DBMS server return
the sum and the count separately, and to increment values
(e.g., SET id = id + 1). HOM ciphertexts are 2048 bits long.

Join ( JOIN and OPE-JOIN). A separate encryption scheme is
needed to allow equality join between two columns, because
we use different column-specific keys for DET to prevent
correlations between columns. JOIN not only supports all
the operations allowed by DET, but also enables the server to
determine repeating values between two different columns.
OPE-JOIN enables joins by order relations. We provide a new
cryptographic scheme for JOIN (Section 3.4).

Word search (SEARCH). SEARCH is used to perform
searches on encrypted text to support operations such as
MySQL’s LIKE operator. SEARCH is nearly as secure as RND.
We implemented the method of Song et al.22 SEARCH cur-
rently supports only full word searches.

When the user performs a query such as SELECT * FROM
messages WHERE msg LIKE “% alice %”, the proxy gives the
DBMS server a token, which is an encryption of alice. The
server cannot decrypt the token to figure out the underly-
ing word. Using a user-defined function, the DBMS server
checks if any of the word encryptions in any message match
the token. All that the server learns from a SEARCH query is
whether the token matched a message or not, and only for
the tokens requested by the user. The server would learn the
same information when returning the result set to the users,
so the scheme reveals the minimal amount of additional
information needed to return the result.

3.2. Adjustable query-based encryption
Our goal is to use the most secure encryption schemes that
enable running the requested queries. For example, if the
application issues no queries that compare data items in
a column, or that sort a column, the column should be
encrypted with RND. For columns that require equality
checks but not order checks, DET suffices. The problem is
that the query set is not always known in advance. Thus, we

Figure 2. Onion encryption layers and the classes of computation
they allow. Onion names stand for the operations they allow at some
of their layers (Equality, Order, Search, and Addition). A random IV
for RND (Section 3.1), shared by the RND layers in Eq and Ord, is also
stored for each data item.

Onion Ord

OPE-JOIN:
range join

OPE: order

any value

RND: no functionality

any value

DET: equality selection

RND: no functionality

JOIN: equality join

int value

HOM: add

Onion Search

SEARCH

text value

Onion Eq Onion Add

September 2012 | vol. 55 | no. 9 | communications of the acm 107

specify that credit card information may at worst be at DET,
and never at OPE).

CryptDB implements onion layer decryption using UDFs
that run on the DBMS server. For example, in Figure 3, to
decrypt onion Ord of column 2 in Table 1 to layer OPE, the
proxy issues the following query to the server, invoking the
DECRYPT_RND UDF:

UPDATE Table1 SET
C2-Ord = DECRYPT_RND(K, C2-Ord, C2-IV,)

where K is the appropriate key computed from Equation (1).
At the same time, the proxy updates its own internal state to
remember that column C2-Ord in Table1 is now at layer OPE
in the DBMS.

Note that onion decryption is performed entirely by the
DBMS server. In the steady state, no server-side decryp-
tions are needed, because onion decryption happens only
when a new class of computation is requested on a col-
umn. For example, after an equality check is requested on
a column and the server brings the column to layer DET,
the column remains in that state, and future queries with
equality checks require no decryption. This property is the
main reason why CryptDB’s run-time overhead is modest
(Section 5).

3.3. Executing over encrypted data
Once the onion layers in the DBMS are at the layer necessary
to execute a query, the proxy transforms the query to operate
on these onions. In particular, the proxy replaces column
names in a query with corresponding onion names, based
on the class of computation performed on that column.
For example, for the schema shown in Figure 3, a reference
to the Name column for an equality comparison will be
replaced with a reference to the C2-Eq column.

The proxy also replaces each constant in the query with
a corresponding onion encryption of that constant, based
on the computation in which it is used. For instance, if a

query contains WHERE Name = “Alice”, the proxy encrypts
“Alice” by successively applying all encryption layers corre
sponding to onion Eq that have not yet been removed
from C2-Eq.

Finally, the proxy replaces certain operators with UDF-
based counterparts. For instance, the SUM aggregate opera-
tor and the + column-addition operator must be replaced
with an invocation of a UDF that performs HOM addition of
ciphertexts. Equality and order operators (such as = and <)
do not need such replacement and can be applied directly to
the DET and OPE ciphertexts.

Read query execution. To understand query execution over
ciphertexts, consider the example schema shown in Figure 3(a).
Initially, each column in the table is dressed in all onions
of encryption, with RND, HOM, and SEARCH as outermost
layers, as shown in Figure 2. At this point, the fields are pro-
tected with strong encryption schemes. Figure 3(b) then
shows an example of processing an equality predicate on the
encrypted data. This query (step 1) requires a lower onion
layer for execution than the one present in the DBMS, so
the proxy removes this layer at the server using the UPDATE
query in (2) by invoking the decryption UDF. Column C1
corresponds to ID, and xe243 is the Eq onion encryption
of “23” with keys KT1,C1,Eq,JOIN and KT1,C1,Eq,DET (see Figure 2).
After the DB server processes the adjustment in (3), the
proxy issues the transformed select query (4), and receives
encrypted results (5). Note that the proxy must request the
random IV from column C2-IV in order to decrypt the
RND ciphertext from C2-Eq. Finally, the proxy decrypts the
results from the server using keys KT1,C2,Eq,RND, KT1,C2,Eq,DET, and
KT1,C2,Eq,JOIN, obtains the result “Alice,” and returns it to the
application (6).

Write query execution. CryptDB supports INSERT, DELETE,
and UPDATE queries in a similar way to SELECT. An UPDATE
of a column value based on an existing column value, such as
salary = salary + 1, is more involved.18

Figure 3. Examples of (a) how CryptDB transforms a table’s schema and encrypts a database, and of (b) a query flow showing onion
adjustments. Strings of the form “x…” denote ciphertexts (not shown to their full length).

(a)

(b)

Application CryptDB proxy

load table load table
:

Outer onion layers are
or

DBMS

Application

DBMS

CryptDB proxy

(1)

(2)

(4)

(5) results:

(3) removing onion layer(6) results:

Need for
but it is at : adjust!

108 communications of the acm | September 2012 | vol. 55 | no. 9

research highlights

3.4. Computing joins
There are two kinds of joins supported by CryptDB: equi-
joins, in which the join predicate is based on equality, and
range joins, which involve order checks. To perform an
equi-join of two encrypted columns, the columns should
be encrypted with the same key so that the server can see
matching values between the two columns. At the same
time, to provide better privacy, the DBMS server should not
be able to join columns for which the application did not
request a join, so columns that are never joined should not
be encrypted with the same keys.

If the queries that can be issued, or the pairs of columns
that can be joined, are known a priori, equi-join is easy to
support: CryptDB can use the DET encryption scheme with
the same key for each group of columns that are joined
together. However, the challenging case is when the proxy
does not know the set of columns to be joined a priori, and
hence does not know which columns should be encrypted
with matching keys.

To solve this problem, we introduce a new cryptographic
primitive, JOIN-ADJ (adjustable join), which allows the
DBMS server to adjust the key of each column at runtime.
Intuitively, JOIN-ADJ can be thought of as a “keyed ran-
dom hash” with the additional property that hashes can be
adjusted to change their key without access to the plaintext.
JOIN-ADJ is a deterministic function of its input, which
means that if two plaintexts are equal, the corresponding
JOIN-ADJ values are also equal. With JOIN-ADJ, initially,
each column uses a different key for the JOIN layer, thus pre-
venting any joins between columns. When a query requests
a join, the proxy gives the DBMS server an “adjustment”
key to adjust the JOIN-ADJ values in one of the two columns
(the first column in lexicographic order), so that it matches
the JOIN-ADJ key of the other column. After the adjustment,
the columns share the same JOIN-ADJ key, allowing the
DBMS server to join them for equality (for this or future que-
ries). Our previous publications18, 19 describe the JOIN-ADJ
scheme formally and prove its security guarantees.

For range joins, a similar dynamic readjustment scheme
is difficult to construct due to the lack of structure in OPE
schemes. Instead, CryptDB requires that pairs of columns
that will be involved in such joins be declared by the applica-
tion ahead of time, so that matching keys are used for layer
OPE-JOIN of those columns; otherwise, the same key will be
used for all columns at layer OPE-JOIN. Fortunately, range
joins are rare; they are not used in any of our example appli-
cations, and are used in only 50 out of 128,840 columns in a
large SQL query trace we describe in Section 5.

3.5. Other queries and limitations
CryptDB supports most relational queries and aggregates
on standard data types, such as integers and text/varchar
types. Additional operations can be added to CryptDB by
extending its existing onions, or adding new onions for spe-
cific data types (e.g., spatial and multidimensional range
queries21). Alternatively, in some cases, it may be possible to
map complex unsupported operations to simpler ones (e.g.,
extracting the month out of an encrypted date is easier if the
date’s day, month, and year fields are encrypted separately).

There are certain computations CryptDB cannot support on
encrypted data. For example, it does not support order compari-
son with a summation, such as WHERE salary > age + 10. One
could support such a query by splitting it into different queries
and having the proxy re-encrypt intermediate results.

Most other DBMS mechanisms, such as transactions and
indexing, work the same way over encrypted data as they do
over plaintext, with no modifications.

4. IMPLEMENTATION
The CryptDB proxy is built on top of mysql-proxy, and
consists of a C++ library and a Lua module. The C++ library
consists of a query parser; a query encryptor/rewriter, which
encrypts fields or includes UDFs in the query; and a result
decryption module. The query rewriter operates on the
abstract syntax tree (AST) of the SQL query. Given an expres-
sion, the rewriter produces replacement expressions for
the value of the original expression encrypted with differ-
ent encryption types (e.g., RND, DET, or just “plaintext”).
We use NTL and OpenSSL for cryptographic operations.
Our prototype consists of ~18,000 lines of C++ code and
~150 lines of Lua code, with another ~10,000 lines of test
code. CryptDB is portable; we have implemented versions
for both Postgres 9.018 and MySQL 5. CryptDB requires
only UDF support from the DBMS and does not change the
DBMS server software.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate three aspects of CryptDB: what
types of queries and applications does CryptDB support,
what is the level of security that CryptDB provides, and what
is the performance impact of using CryptDB?

We analyze the functionality and security of CryptDB
on five applications and one large trace: phpBB (an open-
source Web forum application), HotCRP (a conference
management system), grad-apply (the MIT EECS graduate
admission application), Open-EMR (an electronic medical
records application storing patient medical data), TPC-C
(an industry-standard database benchmark), and a trace
of SQL queries from a popular MySQL server at MIT, sql.
mit.edu. This server is used primarily by Web applications
running on scripts.mit.edu, a shared Web application
hosting service operated by MIT’s Student Information
Processing Board (SIPB). In addition, this SQL server is used
by a number of applications that run on other machines
and use sql.mit.edu only to store their data. Our query trace
spans about ten days, and includes approximately 126 mil-
lion queries over 1193 databases and 18,162 queries. Each
database is likely to be a separate instance of an application.
All these applications and the large SQL trace contain sen-
sitive information that should be protected (e.g., medical
records, student grades, and private messages).

In the first four applications (not counting TPC-C and
the large trace), we manually identify which columns are
likely to be sensitive and encrypt only those. Some fields
were clearly sensitive (e.g., grades, private messages, and
medical information), but others were only marginally so
(e.g., the time at which a message was posted). There was
no clear threshold between sensitive or not, but it was clear

September 2012 | vol. 55 | no. 9 | communications of the acm 109

application to store the permissions in a different way would
allow CryptDB to support such operations. The other 205 col-
umns perform string processing in the WHERE clause, such as
comparing whether lowercase versions of two strings match.
Storing a keyed hash of the lowercase version of each string for
such columns, similar to the JOIN-ADJ scheme, could support
case-insensitive equality checks for ciphertexts. Seventy-six
columns are involved in mathematical transformations in the
WHERE clause, such as manipulating dates, times, scores, and
geometric coordinates. Forty-one columns invoke the LIKE
operator with a column reference for the pattern; this is typi-
cally used to check a particular value against a table storing
a list of banned IP addresses, usernames, URLs, etc. Such a
query can also be rewritten if the data items are sensitive.

5.2. Security evaluation
To understand the amount of information that would
be revealed to the adversary in practice, we examine the
steady-state onion levels of different columns. To quantify
the level of security, we define the MinEnc of a column to
be the weakest onion encryption scheme exposed on any of
the onions of a column when onions reach a steady state
(i.e., after the application generates all query types, or after
running the whole trace). We consider RND and HOM to be
the strongest schemes, followed by SEARCH, followed by
DET and JOIN, and finishing with OPE, which is the weak-
est scheme. For example, if a column has onion Eq at RND,
onion Ord at OPE, and onion Add at HOM, the MinEnc of
this column is OPE.

The right side of Figure 4 shows the MinEnc onion level
for our applications and query traces. We see that most fields
remain at RND, which is the most secure scheme, meaning
that CryptDB leaks virtually nothing about most of the col-
umns. We believe this is a strong indication that CryptDB
achieves high security for practical applications. For exam-
ple, OpenEMR has hundreds of sensitive fields describing
the medical conditions and history of patients, but most of
these fields are just inserted and fetched, and are not used
in any computation, so they remain at RND. A number of
fields also remain at DET, typically to perform key lookups
and joins. Note that if the values encrypted with DET are
distinct, DET is as secure as RND. OPE, which leaks order,
is used the least frequently, and mostly for fields that are

to us which fields were definitely sensitive. In the case of
TPC-C and the large query trace, we encrypt all the col-
umns in the database to study the performance of a fully
encrypted DBMS or understand which queries or columns
are not supported.

We also evaluate the overall performance of CryptDB
on the phpBB application and present a detailed analysis
through microbenchmarks on a query mix from TPC-C.

5.1. Functional evaluation
To evaluate what columns, operations, and queries CryptDB
can support, we analyzed the queries issued by the applica-
tions described above. The results are shown in the left half
of Figure 4.

We find that CryptDB supports most queries; the num-
ber of columns in the “needs plaintext” column, which
counts columns that cannot be processed in encrypted
form by CryptDB, is small relative to the number of columns
encrypted. For OpenEMR, CryptDB does not support que-
ries on certain sensitive fields that perform string manipu-
lation (e.g., substring and lowercase conversions) or date
manipulation (e.g., obtaining the day, month, or year of an
encrypted date). However, if these functions were precom-
puted with the results added as standalone columns (e.g.,
by encrypting the three parts of a date separately), CryptDB
would support these queries.

On the large sql.mit.edu trace, we found that CryptDB should
be able to support operations over all but 1094 of the 128,840
columns observed in the trace. The “in-proxy processing”
shows analysis results where we assumed that the proxy can
perform some lightweight operations on the results returned
from the DBMS server. Specifically, this includes operations
that are not needed to compute the set of resulting rows, or to
aggregate rows: that is, expressions that do not appear
in a WHERE, HAVING, or GROUP BY clause, or in an ORDER BY
clause with a LIMIT, and are not aggregate operators. With in-
proxy processing, CryptDB should be able to process queries
over encrypted data over all but 571 of the 128,840 columns,
thus supporting 99.5% of the columns.

Of those 571 columns, 222 use a bitwise operator in a
WHERE clause or perform bitwise aggregation, such as the
Gallery2 application, which uses a bitmask of permission
fields and consults them in WHERE clauses. Rewriting the

Figure 4. Steady-state onion levels for database columns required by a range of applications and traces. “Consider for encryption” indicates
the columns that should be encrypted: as explained in Section 5, these are the columns deemed sensitive for the four applications, and all
columns for the two traces. “Needs plaintext” indicates the number of columns that should be encrypted, but for which CryptDB cannot
execute the application’s queries over encrypted data. MinEnc is defined in Section 5.2.

Consider

for enc.

Needs

plaintext

Non-plaintext cols. with MinEnc:

Application RND/SEARCH DET OPE

phpBB 23 0 21 1 1

HotCRP 22 0 19 1 2

grad-apply 103 0 95 6 2

OpenEMR 566 7 528 12 19

TPC-C 92 0 65 19 8

Trace from sql.mit.edu 128,840 1094 80,403 34,212 13,131

...with in-proxy processing 128,840 571 84,406 35,350 8513

110 communications of the acm | September 2012 | vol. 55 | no. 9

research highlights

The throughput with CryptDB was 26% lower than that
with plain MySQL on TPC-C. We believe this overhead is
modest considering the gains in confidentiality. To under-
stand the sources of CryptDB’s overhead, we measure the
server throughput for different types of SQL queries seen
in TPC-C, on the same server, but running with only one
core enabled. Figure 5 shows the results for MySQL and
CryptDB. The results show that CryptDB’s throughput pen-
alty is the greatest for queries that involve a SUM (half the
throughput) and for incrementing UPDATE statements
(1.6 × less throughput); these are the queries that involve
HOM additions at the server. For the other types of queries,
which form a larger part of the TPC-C mix, the throughput
penalty is lower.

To understand the latency introduced by CryptDB, we
measure the server and proxy processing times for the
same types of SQL queries as above. The server latency is
0.12 ms, which is a 20% increase over the 0.10 ms latency
of plain MySQL, which we consider to be small. The proxy
adds an average of 0.60 ms to a query; of that time, 24% is
spent on mysql-proxy, 23% is spent on encryption and
decryption, and the remaining 53% is spent parsing and
processing queries. The cryptographic overhead is rela-
tively small because most of our encryption schemes are
efficient. OPE and HOM are the slowest, but we performed
two optimizations: pre-computing randomness to speed
up encryption for HOM, and caching ciphertexts for OPE.
Without these optimizations, the proxy latency would have
been 10.7 ms on average in our experiments, which is sig-
nificantly higher.

5.3.2. phpBB
We also evaluated the performance of CryptDB on phpBB,
an open-source Web forum application. We measured the
HTTP request processing throughput of a phpBB server
using both CryptDB and a standard MySQL database. We
encrypted only the sensitive fields as shown in Figure 4. We
found that CryptDB reduced throughput by only 14.5%.

6. RELATED WORK
Search and queries over encrypted data. Cryptographic tools
for performing keyword search over encrypted data have
been proposed (e.g., Song et al.22 which we use to implement
SEARCH). When applied to processing SQL on encrypted
data, these techniques suffer from some of the follow-
ing limitations: certain basic queries are not supported or
are too inefficient (especially joins and order checks), they
require significant client-side query processing, users either
have to build and maintain indexes on the data at the server
or have to perform sequential scans for every selection/
search, and implementing these techniques requires unat-
tractive changes to the innards of the DBMS.

Some researchers have developed prototype systems for
subsets of SQL, but they achieve lower security, require a sig-
nificant DBMS rewrite, and rely on client-side processing. For
example, Hac gümüş et al.10 heuristically split the domain of
possible values for each column into partitions, storing the
partition number unencrypted for each data item, and rely
on extensive client-side filtering of query results.

marginally sensitive (e.g., timestamps and counts of mes-
sages). This data demonstrates the importance of CryptDB’s
adjustable security: it provides a significant improvement
in confidentiality over revealing all encryption schemes to
the server.

For the sql.mit.edu trace, approximately 6.6% of the col-
umns were at OPE even with in-proxy processing; the other
encrypted columns remain at DET or above. Out of the
columns that were at OPE, ~60% are used in an ORDER BY
clause with a LIMIT, ~55% are used in an order compari-
son in a WHERE clause, and ~4% are used in a MIN or MAX
aggregate operator (some of the columns are counted in
more than one of these groups). It would be difficult to per-
form these computations in the proxy without substantially
increasing the amount of data sent to it.

5.3. Performance evaluation
To evaluate the performance of CryptDB, we used a machine
with two 2.4 GHz Intel Xeon E5620 4-core processors and
12 GB of RAM to run the MySQL 5.1.54 server, and a machine
with eight 2.4 GHz AMD Opteron 8431 6-core processors
and 64 GB of RAM to run the CryptDB proxy and the clients.
The two machines were connected over a shared Gigabit
Ethernet network. The higher-provisioned client machine
ensures that the clients are not the bottleneck in any experi-
ment. All workloads fit in the server’s RAM.

5.3.1. TPC-C
We compare the performance of a TPC-C query mix when
running on an unmodified MySQL server versus on a
CryptDB proxy in front of the MySQL server. We warmed up
CryptDB on the query set so that there are no onion adjust-
ments during the TPC-C experiments. The server spends
100% of its CPU time processing queries.

We consider two important metrics: database server
throughput (number of queries per second that the server
can process) and latency (time interval from when the
application issues a query to when it receives the result).

Figure 5. Throughput of different types of SQL queries from the
TPC-C query mix running under MySQL and CryptDB. “Upd. inc”
stands for UPDATE that increments a column, and “Upd. set” stands
for UPDATE that sets columns to a constant.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Equality

Join
Range

Sum
Delete

Insert

Upd. set

Upd. inc

Q
ue

ri
es

 /
se

c

MySQL
CryptDB

September 2012 | vol. 55 | no. 9 | communications of the acm 111

	 1.	 Boldyreva, A., Chenette, N., Lee, Y.,
O’Neill, A. Order-preserving
symmetric encryption. In
EUROCRYPT (2009).

	 2.	 Boldyreva, A., Chenette, N., Lee,
Y., O'Neill, A. Order-Preserving
Encryption Revisited: Improved
Security Analysis and Alternative
Solutions. In Advances in Cryptology
(CRYPTO) (2011).

	 3.	 Chen, A. GCreep: Google engineer
stalked teens, spied on chats.
Gawker (2010). http://gawker.
com/5637234/.

	 4.	 Chlipala, A. Static checking of
dynamically-varying security
policies in database-backed
applications. In Proceedings
of the 9th Symposium on
Operating Systems Design and
Implementation (2010).

	 5.	F eldman, A.J., Zeller, W.P.,
Freedman, M.J., Felten, E.W.
SPORC: Group collaboration using
untrusted cloud resources. In
Proceedings of the 9th Symposium
on Operating Systems Design and
Implementation (2010).

	 6.	 FIPS 197. Advanced Encryption
Standard (AES). U.S. Department
of Commerce/N.I.S.T., National
Technical Information Service,
Springfield, VA, 2011.

	 7.	G entry, C. Fully homomorphic
encryption using ideal lattices. In
Proceedings of the 41st Annual
ACM Symposium on Theory of
Computing (2009).

	 8.	G entry, C., Halevi, S., Smart, N.P.
Homomorphic evaluation of the AES
circuit. Cryptology ePrint Archive,
Report 2012/099, 2012.

	 9.	G oldreich, O. Foundations of
Cryptography: Volume I Basic Tools,
Cambridge University Press, 2001.

	10.	H ac gümüş, H., Iyer, B., Li, C.,
Mehrotra, S. Executing SQL over
encrypted data in the database-
service-provider model. In
Proceedings of ACM SIGMOD (2002).

	11.	H alderman, J.A., Schoen, S.D.,
Heninger, N., Clarkson, W., Paul, W.,
Calandrino, J.A., Feldman, A.J.,
Appelbaum, J., Felten, E.W. Lest
we remember: Cold boot attacks on
encryption keys. In Proceedings of
the 17th Usenix Security Symposium
(2008).

	12.	H alevi, S., Rogaway, P. A tweakable
enciphering mode. In Advances
in Cryptology (CRYPTO)
(2003).

	13.	H omeland Security News Wire. Data
breaches compromise nearly 8 million
medical records, 2011.

	14.	L i, J., Krohn, M., Mazières, D.,
Shasha, D. Secure untrusted
data repository (SUNDR). In
Proceedings of the 6th Symposium
on Operating Systems Design and
Implementation (2004).

	15.	N IST. National Vulnerability
Database. http://nvd.nist.gov.

	16.	O racle Corporation. Oracle advanced
security. http://www.oracle.com/
technetwork/database/options/
advanced-security/.

	17.	P aillier, P. Public-key cryptosystems
based on composite degree
residuosity classes. In EUROCRYPT
(1999).

	18.	P opa, R.A., Redfield, C.M.S.,
Zeldovich, N., Balakrishnan, H.
CryptDB: Protecting confidentiality
with encrypted query processing.
In Proceedings of the 23rd ACM
Symposium on Operating Systems
Principles (2011).

	19.	P opa, R.A., Zeldovich, N.
Cryptographic treatment of
CryptDB’s adjustable join.
Technical Report MIT-CSAIL-
TR-2012-006, MIT Computer
Science and Artificial Intelligence
Laboratory, 2012.

	20.	 Quinn, B., Arthur, C. Playstation
network hackers access data of
77 million users. The Guardian, 2011.

	21.	S hi, E., Bethencourt, J., Chan, H.,
Song, D., Perrig, A. Multi-dimensional
range query over encrypted
data. In Proceedings of the IEEE
Symposium on Security and Privacy
(2007).

	22.	S ong, D.X., Wagner, D., Perrig, A.
Practical techniques for searches on
encrypted data. In Proceedings of the
21st IEEE Symposium on Security
and Privacy (2000).

	23.	Y ip, A., Wang, X., Zeldovich, N.,
Kaashoek, M.F. Improving
application security with data
flow assertions. In Proceedings
of the 22nd ACM Symposium
on Operating Systems
Principles (2009).

© 2012 ACM 0001-0782/12/09 $15.00

Untrusted servers. SUNDR14 uses cryptography to provide
privacy and integrity in a file system on top of an untrusted
file server. Using a SUNDR-like model, SPORC5 shows how
to build low-latency applications, running mostly on the
clients, without having to trust a server. However, exist-
ing server-side applications that involve separate data-
base and application servers cannot be used with SPORC
unless they are rewritten as distributed client-side appli-
cations. Many applications are not amenable to such a
structure.

Companies like Navajo Systems and Ciphercloud provide
a trusted application-level proxy that intercepts network
traffic between clients and cloud-hosted servers (e.g., IMAP),
and encrypts sensitive data stored on the server. In compari-
son, CryptDB supports a richer set of operations (most of
SQL) and provides better security.

Disk encryption. Various commercial database products,
such as Oracle’s Transparent Data Encryption,16 encrypt
data on disk, but decrypt it to perform query processing. As
a result, the server must have access to decryption keys, and
an adversary compromising the DBMS software can gain
access to the entire data.

Software security. Many tools help programmers either
find or mitigate mistakes in their code that may lead to
vulnerabilities, including static analysis tools like UrFlow,4
and runtime tools like Resin.23 In contrast, CryptDB pro-
vides confidentiality guarantees for user data even if the
adversary gains complete control over the application and
database servers. These tools provide no guarantees in the
face of this threat, but in contrast, CryptDB cannot pro-
vide confidentiality in the face of vulnerabilities that trick
the user’s client machine into issuing unwanted requests
(such as cross-site scripting or cross-site request forgery
vulnerabilities in Web applications). As a result, using
CryptDB together with these tools should further improve
application security.

Query integrity. CryptDB does not ensure that the query results
from the server are correct, but most existing techniques for
SQL query integrity can be integrated into CryptDB because
CryptDB allows relational queries on encrypted data to be pro
cessed just like on plaintext.

7. CONCLUSION
We presented CryptDB, the first practical system that can
execute a wide range of SQL queries on encrypted data. Using
SQL-aware adjustable encryption with multiple onions,
CryptDB provides a strong level of confidentiality in the
face of two significant threats confronting database-backed
applications: compromises to the DBMS server by a passive
adversary, and arbitrary compromises to the application
server and the DBMS. CryptDB requires no changes to the
internals of the DBMS. Our evaluation shows that CryptDB
successfully handles a wide range of queries observed in
practice, with a modest performance overhead. CryptDB’s
Website (including papers and source code) is at http://css.
csail.mit.edu/cryptdb/.

Acknowledgments
We thank everyone who helped with the original paper,18
and Alon Halevy and the Communications staff for helping
improve this paper. This work was supported by the NSF (IIS-
1065219 and CNS-0716273) and by Google.�

References

Raluca Ada Popa, Catherine M.S.
Redfield, Nickolai Zeldovich, and
Hari Balakrishnan, Computer Science
and Artificial Intelligence Lab, M.I.T.,
Cambridge, MA.

