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1. INTRODUCTION
Theft of private information is a significant problem for 
online applications. For example, a recent investigation 
found that at least eight million people’s medical records 
were stolen as a result of data breaches between 2009 
and 2011,13 and in a recent attack on the Sony Playstation 
Network, attackers apparently gained access to about 77 
million personal user profiles, some of which included 
credit card information.20 Such large-scale data thefts 
make the popular press, but smaller-scale compromises 
occur on a nearly daily basis, according to organizations 
devoted to studying consumer and data privacy (e.g., the 
Privacy Rights Clearinghouse).

Sensitive data can leak from online data repositories for a 
variety of reasons: an adversary can exploit software vulner-
abilities to gain unauthorized access to servers,15 curious or 
malicious administrators at a hosting provider can snoop on 
private data,3 and attackers with physical access to servers 
can steal data from disk and memory.11

One approach to reduce the damage caused by server 
compromises is to encrypt all sensitive data stored on the 
servers. However, many important applications, includ-
ing database-backed Web services that process SQL que-
ries, as well as analytic applications that compute results 
over large quantities of data, require servers to not just 
store  data, but also perform computations on the data. 
One solution could be to store the data encrypted at 
the  server, but to perform all computation at a trusted 
client on plaintext by downloading and decrypting all 
needed data for every computation; this approach, how-
ever, is usually untenable because there might be too 
much data to move around, or because clients may have 
significantly less computation or storage resources than 
the server.

An ideal solution to satisfying the dual goals of protect-
ing data confidentiality and running computations is  to 
enable a server to compute over encrypted data, without 
the server ever decrypting the data to plaintext. The server 
would produce results in an encrypted form, decryptable 
only by a trusted client. This approach would preserve the 
architecture of running much of the application’s computa-
tion at the server.

Theoretical approaches such as fully homomorphic 
encryption7 enable the server to compute arbitrary functions 
over encrypted data, while providing excellent confidential-
ity guarantees. But despite good progress in recent years, 
these schemes remain many orders of magnitude slower 
than equivalent plaintext computations (e.g., computing 
the decryption circuit for AES—the Advanced Encryption 
Standard6 is at least 109 times slower8).

We introduce CryptDB, a practical system that explores 
an intermediate design point to provide confidentiality 
for applications that use database management systems 
(DBMSes). CryptDB is the first practical system that can 
execute a wide range of SQL queries over encrypted data. 
The key insight that makes our approach practical is that 
most SQL queries use a small set of well-defined opera-
tors, each of which we are able to support efficiently over 
encrypted data.

CryptDB addresses two threats, as illustrated in 
Figure 1. The first threat is an adversary who gains access to 
the DBMS server and tries to learn private data (e.g., health 
records, financial statements, and personal information) 
by snooping on the server. This threat might arise when an 
attacker exploits some vulnerability to directly get to the 
DB server, when the database is outsourced to an external 
organization (e.g., a public “cloud”), or when the DBMS is 
administered by a curious system or database administra-
tor (DBA) who might not be trusted. CryptDB aims to pre-
vent the adversary from learning private data in this case. 
The second threat is an adversary who gains complete con-
trol of the application and the DBMS servers. In this case, 
CryptDB protects the confidentiality of the data belong-
ing only to users logged-out of the application during an 
attack, but cannot provide any guarantees for logged-in 
users. This paper focuses primarily on the solution to the 
first threat; our SOSP paper18 details the additional mecha-
nisms that address the second threat.

CryptDB requires no changes to the internals of the 
DBMS server, and should work with most standard SQL 
DBMSes. Our implementation uses a MySQL back-end. 
Our experiments show that the overhead of CryptDB is 
modest: throughput reduces by only 26% for queries from 
the standard TPC-C benchmark, and by only 14.5% for 
a  multiuser bulletin board application (phpBB),18 com-
pared to running them over MySQL without encryption. 
We find that CryptDB supports most queries observed 
in  practice: an analysis of 126 million SQL queries from 
an MIT MySQL service showed that CryptDB supports 
operations over encrypted data for 99.5% of the 128,840 
columns seen in the query trace.

2. THREAT MODEL AND OVERVIEW
In this section, we discuss CryptDB’s threat model and pro-
vide an overview of our approach.

A previous version of this paper was published in the 
Proceedings of the 23rd ACM Symposium on Operating 
Systems Principles, October 2011.
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CryptDB is careful about what relations between tuples it 
reveals to the DBMS server. To execute a GROUP BY on column c, 
for instance, the server need not know the order of the items 
in column c, nor any information about other columns. To 
execute an ORDER BY, or to find the MAX or MIN, CryptDB 
reveals the order of items in that column, but not otherwise.

CryptDB incorporates two techniques: SQL-aware encry
ption and adjustable query-based encryption. SQL-aware 
encryption uses the observation that most SQL queries 
are made up of a well-defined set of basic operators, such 
as equality checks, order comparisons, aggregates (sums), 
and joins. CryptDB supports these operators over encrypted 
data. By adapting known encryption schemes (for equality, 
additions, and order checks), and using a new privacy-
preserving cryptographic scheme for joins, CryptDB encry
pts each data item in a way that allows the DBMS to execute 
on the transformed data.

The second technique is adjustable query-based encryp-
tion: CryptDB carefully adjusts the SQL-aware encryption 
scheme for any given data item to support different opera-
tions on this data. To implement these adjustments effi-
ciently, CryptDB uses onions of encryption. Onions are a novel 
way to compactly store multiple ciphertexts within each 
other in the database and avoid revealing weaker encryption 
schemes when they are not needed.

CryptDB provides confidentiality for the content of the 
data and for names of columns and tables, but does not 
hide the overall table structure, the number of rows, the 
types of columns, or the approximate size of data in bytes. 
The only information that CryptDB reveals to the DBMS 
server is relationships among data items correspond-
ing to  classes of computation that queries perform on the 
database, such as comparing items for equality, sorting, or 
performing word search. The granularity at which CryptDB 
allows the DBMS to perform a class of computations is an 
entire column (or  a group of joined columns, for joins), 
which means that even if a query requires equality checks 
for a few rows, executing that query on the server would 
require revealing that class of computation for an entire 
column. Section 3.1 describes how these classes of com-
putation map  to CryptDB’s encryption schemes, and the 
information they reveal.
CryptDB provides the following properties:

2.1. Threat 1: DBMS server compromise
CryptDB provides confidentiality (data secrecy) in the face 
of an attacker with full read access to the data stored in 
the DBMS server. The attacker is assumed to be passive: 
she wants to learn confidential data, but does not change 
queries issued by the application, query results, or the data 
in the DBMS. This threat includes DBMS software compro-
mises, root access to DBMS machines, and even access to 
the RAM of physical machines. With the rise in database 
consolidation inside enterprise data centers, outsourcing 
of databases to public cloud computing infrastructures, 
and the use of third-party DBAs, this threat is increasingly 
important. We focus on confidentiality, not data integrity 
or availability.

CryptDB addresses this threat by executing SQL que-
ries over encrypted data on the DBMS server. As shown in 
Figure 1, CryptDB works by intercepting all SQL queries 
in a trusted proxy; existing applications do not need to be 
modified to use CryptDB, but all queries must go through 
the proxy. The proxy stores a master secret key, which 
it  uses to rewrite queries to execute on encrypted data. 
The  proxy encrypts and decrypts all data, and changes 
some query operators, while preserving the semantics of 
the query. Because the DBMS server never receives decryp-
tion keys to the plaintext, it never sees sensitive data, 
ensuring that our passive adversary cannot gain access to 
private information.

The main challenge when executing queries on encryp
ted data lies in the tension between minimizing the 
amount of confidential information revealed to the 
DBMS server and the ability to efficiently execute a vari-
ety of queries. Our strategy is to allow the DBMS server to 
perform query processing on encrypted data mostly as it 
would on an unencrypted database (important for practi-
cality), while restricting the server to computing only the 
functions required to process authorized queries (important 
for confidentiality). For example, if the DBMS needs to 
perform a GROUP BY on column c, the DBMS server should 
be able to determine which items in that column are equal 
to each other, but not the actual content of each item. 
Therefore, the proxy needs to enable the DBMS server to 
determine relationships among data items necessary to 
process a query.

Figure 1. CryptDB’s architecture consisting of two parts: a proxy and an unmodified DBMS. CryptDB uses user-defined functions (UDFs) 
to perform cryptographic operations in the DBMS. Rectangular and rounded boxes represent processes and data, respectively. Shading 
indicates components added by CryptDB. Dashed lines indicate separation between users’ computers, the application server, a server 
running CryptDB’s proxy (which is usually the same as the application server), and the DBMS server. The scope of the two threats CryptDB 
addresses is shown as dotted lines.
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•  Sensitive data is never available in plaintext at the 
DBMS server.

•	 If the application requests no relational predicate 
filtering on a column, nothing about the data content 
leaks (other than its size in bytes). In Section 5, we show 
that all or almost all of the most sensitive fields in the 
tested applications are in this category.

•	 If the application requests equality checks on a col-
umn, CryptDB’s proxy reveals which items repeat in 
that column, but not the actual values.

•	 If the application requests order checks on a column, the 
proxy reveals the order of the elements in the column.

2.2. Threat 2: arbitrary threats
The approach in threat 1 is insufficient when the application 
server, the proxy, and the DBMS server infrastructure may all 
be arbitrarily compromised. The reason is that an adversary 
corrupting the proxy can now get access to the master key 
used to encrypt the entire database.

The solution is to use the SQL-aware and adjustable 
encryption techniques, but not with a single master key. 
Instead, we use per-user keys, derived from the user’s pass-
word, each having access to only a subset of the data.

A challenge is that simply encrypting each user’s data 
with that user’s password does not work because users 
may share data. To permit data sharing, we encrypt each 
data item with a new key, and chain these new keys to user 
passwords, so that each data item can be decrypted only 
through a chain of keys rooted at the password of a user 
with legitimate access to that data. To construct a chain of 
keys that captures the application’s data privacy and shar-
ing policy, CryptDB requires the developer to provide pol-
icy annotations over the application’s SQL schema.

Because queries still execute over encrypted data, the 
passive adversary of threat 1 remains at bay. In addition, 
even in the face of arbitrary server-side compromises, 
CryptDB protects the data of users logged out for the dura-
tion of an attack, since none of the components compro-
mised by this attack have access to the keys of those users. 
However, an adversary that compromises the application 
server or proxy can gain access to data of users logged in 
during the attack, by obtaining their keys. By “duration of 
an attack,” we mean the interval from the start of a com-
promise until any trace of the compromise has been erased 
from the system.

3. QUERIES OVER ENCRYPTED DATA
This section describes how CryptDB executes SQL queries 
over encrypted data in the face of the threat described in 
Section 2.1.

The CryptDB proxy stores a secret master key MK, the 
database schema, and the current encryption layer of each 
column. The DBMS server sees an anonymized schema (in 
which table and column names are replaced by opaque 
identifiers), encrypted user data, and some auxiliary tables 
used by CryptDB. CryptDB also equips the server with cer-
tain user-defined functions (UDFs) that enable the server to 
compute on ciphertexts for certain operations.
Processing a query in CryptDB involves four steps:

1.	 The application issues a query, which the proxy 
intercepts and rewrites: it anonymizes each table 
and column name, and, using the master key MK, 
encrypts each constant in the query with an encryp-
tion scheme best suited for the desired operation 
(Section 3.1). The proxy also replaces certain opera-
tions with UDFs.

2.	 The proxy checks if the DBMS server should be given 
keys to adjust encryption layers before executing the 
query, and if so, issues an UPDATE query at the DBMS 
server, which invokes a UDF to adjust the encryption 
layer of the appropriate columns (Section 3.2).

3.	 The proxy sends the encrypted query to the server, 
which executes it.

4.	 The server returns the encrypted query result, which 
the proxy decrypts and returns to the application.

3.1. SQL-aware encryption
We now describe the encryption methods used in CryptDB, 
including a number of existing cryptosystems and a new cryp-
tographic primitive for joins. For each encryption method, 
we explain the security property that CryptDB requires from 
it, its functionality, and how it is implemented.

Random (RND). RND provides the maximum security in 
CryptDB: indistinguishability under an adaptive chosen-
plaintext attack (IND-CPA). This scheme is probabilistic, 
meaning that two equal values are mapped to different cipher-
texts with high probability. On the other hand, RND does not 
allow any computation to be performed efficiently on the 
ciphertext. An efficient construction of RND is to use a block 
cipher like advanced encryption standard (AES)6 or Blowfish 
in CBC mode together with a random initialization vector (IV). 
(We mostly use AES, except for integer values, where we use 
Blowfish for its 64-bit block size because the 128-bit block size 
of AES would cause the ciphertext to be significantly longer.)

Deterministic (DET). DET enables the server to learn which 
encrypted values correspond to the same data value, by 
deterministically generating the same ciphertext for the 
same plaintext. Therefore, this encryption layer allows 
the server to perform equality checks, which means it can 
perform selects with equality predicates, equality joins, 
GROUP BY, COUNT, DISTINCT, etc.

In cryptographic terms, DET should be a pseudo-random 
permutation (PRP).9 We use Blowfish or AES in CMC mode10 
to implement DET.

Order-preserving encryption (OPE). OPE allows the server 
to determine order relations between data items based on 
their encrypted values, without revealing the data itself. If 
x < y, then OPEK (x) < OPEK ( y), for any secret key K. Therefore, 
if a column is encrypted with OPE, the server can perform 
range queries when given encrypted constants OPEK (c1) and 
OPEK(c2) corresponding to the range [c1, c2]. The server can 
also perform ORDER BY, MIN, MAX, SORT, etc.

OPE is a weaker encryption scheme than DET because 
it  reveals order. Thus, the CryptDB proxy will only reveal 
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need an adaptive scheme that dynamically adjusts encryp-
tion strategies.

CryptDB’s adjustable query-based encryption technique 
solves this problem by dynamically adjusting the layer of 
encryption on the DBMS server. The idea is to encrypt each 
data item in one or more onions: that is, each value is dressed 
in layers of increasingly stronger encryption, as shown in 
Figures 2 and 3. Each layer of each onion enables a certain 
class of computation, as explained earlier.

Multiple onions are required because the computations 
supported by different encryption schemes are not always 
strictly ordered. Depending on the type of the data, CryptDB 
may not maintain all onions for each column. For instance, 
the Search onion does not make sense for integers, and the 
Add onion does not make sense for strings.

For each layer of each onion, the proxy uses the same 
key for encrypting values in the same column, and differ-
ent keys across tables, columns, onions, and onion layers. 
Using the same key for all values in a column allows the 
proxy to perform operations on a column without having 
to compute separate keys for each row that will be manip-
ulated. Using different keys across columns prevents the 
server from learning any additional relations. All of these 
keys are derived from the master key MK. For example, for 
table t, column c, onion o, and encryption layer l, the proxy 
uses the key

	 Kt,c,o,l = PRPMK (table t, column c, onion o, layer l ),� (1)

where PRP is a pseudorandom permutation (e.g., AES).
Each onion starts out with the most secure encryption 

scheme as the top level (RND for onions Eq and Ord, HOM 
for onion Add, and SEARCH for onion Search). As the proxy 
receives SQL queries from the application, it determines 
whether layers of encryption need to be removed. If a query 
requires predicate P on column c, the proxy first establishes 
what onion layers are needed to compute P on c. If the 
encryption of c is not already at an onion layer that allows P, 
the proxy strips off the onion layers to allow P on c, by send-
ing the corresponding onion key to the server. The proxy 
never decrypts the data past the least-secure non-plaintext 
encryption onion layer, which may be overridden by the 
schema developer to be a more secure layer (e.g., one may 

OPE-encrypted columns to the server if users request order 
queries on those columns. OPE is proven to be equivalent 
to a random mapping that preserves order.1 However, such 
a mapping leaks half of the data bits in the worst case.2 We 
are currently working on a new scheme that provably reveals 
only order and leaks no bits in addition.

Homomorphic encryption (HOM). HOM is as secure a prob-
abilistic encryption scheme as RND, but allows the server 
to perform computations on encrypted data with the final 
result decrypted at the proxy. Although fully homomorphic 
encryption is prohibitively slow, homomorphic encryption 
for specific operations is efficient. To support additions, we 
implemented the Paillier cryptosystem.17 With Paillier, mul-
tiplying the encryptions of two values results in an encryp-
tion of the sum of the values, that is, HOMK (x) · HOMK ( y) = 
HOMK (x + y), where the multiplication is performed modulo 
some public-key value. To compute SUM aggregates, the proxy 
replaces SUM with calls to a UDF that performs Paillier multi-
plication on a column encrypted with HOM. HOM can also be 
used to compute averages by having the DBMS server return 
the sum and the count separately, and to increment values 
(e.g., SET id = id + 1). HOM ciphertexts are 2048 bits long.

Join ( JOIN and OPE-JOIN). A separate encryption scheme is 
needed to allow equality join between two columns, because 
we use different column-specific keys for DET to prevent 
correlations between columns. JOIN not only supports all 
the operations allowed by DET, but also enables the server to 
determine repeating values between two different columns. 
OPE-JOIN enables joins by order relations. We provide a new 
cryptographic scheme for JOIN (Section 3.4).

Word search (SEARCH). SEARCH is used to perform 
searches on encrypted text to support operations such as 
MySQL’s LIKE operator. SEARCH is nearly as secure as RND. 
We implemented the method of Song et al.22 SEARCH cur-
rently supports only full word searches.

When the user performs a query such as SELECT * FROM 
messages WHERE msg LIKE “% alice %”, the proxy gives the 
DBMS server a token, which is an encryption of alice. The 
server cannot decrypt the token to figure out the underly-
ing word. Using a user-defined function, the DBMS server 
checks if any of the word encryptions in any message match 
the token. All that the server learns from a SEARCH query is 
whether the token matched a message or not, and only for 
the tokens requested by the user. The server would learn the 
same information when returning the result set to the users, 
so the scheme reveals the minimal amount of additional 
information needed to return the result.

3.2. Adjustable query-based encryption
Our goal is to use the most secure encryption schemes that 
enable running the requested queries. For example, if the 
application issues no queries that compare data items in 
a column, or that sort a column, the column should be 
encrypted with RND. For columns that require equality 
checks but not order checks, DET suffices. The problem is 
that the query set is not always known in advance. Thus, we 

Figure 2. Onion encryption layers and the classes of computation 
they allow. Onion names stand for the operations they allow at some 
of their layers (Equality, Order, Search, and Addition). A random IV 
for RND (Section 3.1), shared by the RND layers in Eq and Ord, is also 
stored for each data item.
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specify that credit card information may at worst be at DET, 
and never at OPE).

CryptDB implements onion layer decryption using UDFs 
that run on the DBMS server. For example, in Figure 3, to 
decrypt onion Ord of column 2 in Table 1 to layer OPE, the 
proxy issues the following query to the server, invoking the 
DECRYPT_RND UDF:

UPDATE Table1 SET
C2-Ord = DECRYPT_RND(K, C2-Ord, C2-IV,)

where K is the appropriate key computed from Equation (1). 
At the same time, the proxy updates its own internal state to 
remember that column C2-Ord in Table1 is now at layer OPE 
in the DBMS.

Note that onion decryption is performed entirely by the 
DBMS server. In the steady state, no server-side decryp-
tions are needed, because onion decryption happens only 
when a new class of computation is requested on a col-
umn. For example, after an equality check is requested on 
a column and the server brings the column to layer DET, 
the column remains in that state, and future queries with 
equality checks require no decryption. This property is the 
main reason why CryptDB’s run-time overhead is modest 
(Section 5).

3.3. Executing over encrypted data
Once the onion layers in the DBMS are at the layer necessary 
to execute a query, the proxy transforms the query to operate 
on these onions. In particular, the proxy replaces column 
names in a query with corresponding onion names, based 
on the class of computation performed on that column. 
For example, for the schema shown in Figure 3, a reference 
to the Name column for an equality comparison will be 
replaced with a reference to the C2-Eq column.

The proxy also replaces each constant in the query with 
a corresponding onion encryption of that constant, based 
on the computation in which it is used. For instance, if a 

query contains WHERE Name = “Alice”, the proxy encrypts 
“Alice” by successively applying all encryption layers corre
sponding to onion Eq that have not yet been removed 
from C2-Eq.

Finally, the proxy replaces certain operators with UDF-
based counterparts. For instance, the SUM aggregate opera-
tor and the + column-addition operator must be replaced 
with an invocation of a UDF that performs HOM addition of 
ciphertexts. Equality and order operators (such as = and <) 
do not need such replacement and can be applied directly to 
the DET and OPE ciphertexts.

Read query execution. To understand query execution over 
ciphertexts, consider the example schema shown in Figure 3(a). 
Initially, each column in the table is dressed in all onions 
of encryption, with RND, HOM, and SEARCH as outermost 
layers, as shown in Figure 2. At this point, the fields are pro-
tected with strong encryption schemes. Figure  3(b) then 
shows an example of processing an equality predicate on the 
encrypted data. This query (step 1) requires a lower onion 
layer for execution than the one present in the DBMS, so 
the proxy removes this layer at the server using the UPDATE 
query in (2) by invoking the decryption UDF. Column C1 
corresponds to ID, and xe243 is the Eq onion encryption 
of “23” with keys KT1,C1,Eq,JOIN and KT1,C1,Eq,DET (see  Figure 2). 
After the DB server processes the adjustment in (3), the 
proxy issues the transformed select query (4), and receives 
encrypted results (5). Note that the proxy must request the 
random IV from column C2-IV in order to decrypt the 
RND ciphertext from C2-Eq. Finally, the proxy decrypts the 
results from the server using keys KT1,C2,Eq,RND, KT1,C2,Eq,DET, and 
KT1,C2,Eq,JOIN, obtains the result “Alice,” and returns it to the 
application (6).

Write query execution. CryptDB supports INSERT, DELETE, 
and UPDATE queries in a similar way to SELECT. An UPDATE 
of a column value based on an existing column value, such as 
salary = salary + 1, is more involved.18

Figure 3. Examples of (a) how CryptDB transforms a table’s schema and encrypts a database, and of (b) a query flow showing onion 
adjustments. Strings of the form “x…” denote ciphertexts (not shown to their full length).
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3.4. Computing joins
There are two kinds of joins supported by CryptDB: equi-
joins, in which the join predicate is based on equality, and 
range joins, which involve order checks. To perform an 
equi-join of two encrypted columns, the columns should 
be encrypted with the same key so that the server can see 
matching values between the two columns. At the same 
time, to provide better privacy, the DBMS server should not 
be able to join columns for which the application did not 
request a join, so columns that are never joined should not 
be encrypted with the same keys.

If the queries that can be issued, or the pairs of columns 
that can be joined, are known a priori, equi-join is easy to 
support: CryptDB can use the DET encryption scheme with 
the same key for each group of columns that are joined 
together. However, the challenging case is when the proxy 
does not know the set of columns to be joined a priori, and 
hence does not know which columns should be encrypted 
with matching keys.

To solve this problem, we introduce a new cryptographic 
primitive, JOIN-ADJ (adjustable join), which allows the 
DBMS server to adjust the key of each column at runtime. 
Intuitively, JOIN-ADJ can be thought of as a “keyed ran-
dom hash” with the additional property that hashes can be 
adjusted to change their key without access to the plaintext. 
JOIN-ADJ is a deterministic function of its input, which 
means that if two plaintexts are equal, the corresponding 
JOIN-ADJ values are also equal. With JOIN-ADJ, initially, 
each column uses a different key for the JOIN layer, thus pre-
venting any joins between columns. When a query requests 
a join, the proxy gives the DBMS server an “adjustment”  
key to adjust the JOIN-ADJ values in one of the two columns 
(the first column in lexicographic order), so that it matches 
the JOIN-ADJ key of the other column. After the adjustment, 
the columns share the same JOIN-ADJ key, allowing the 
DBMS server to join them for equality (for this or future que-
ries). Our previous publications18, 19 describe the JOIN-ADJ 
scheme formally and prove its security guarantees.

For range joins, a similar dynamic readjustment scheme 
is difficult to construct due to the lack of structure in OPE 
schemes. Instead, CryptDB requires that pairs of columns 
that will be involved in such joins be declared by the applica-
tion ahead of time, so that matching keys are used for layer 
OPE-JOIN of those columns; otherwise, the same key will be 
used for all columns at layer OPE-JOIN. Fortunately, range 
joins are rare; they are not used in any of our example appli-
cations, and are used in only 50 out of 128,840 columns in a 
large SQL query trace we describe in Section 5.

3.5. Other queries and limitations
CryptDB supports most relational queries and aggregates 
on standard data types, such as integers and text/varchar 
types. Additional operations can be added to CryptDB by 
extending its existing onions, or adding new onions for spe-
cific data types (e.g., spatial and multidimensional range 
queries21). Alternatively, in some cases, it may be possible to 
map complex unsupported operations to simpler ones (e.g., 
extracting the month out of an encrypted date is easier if the 
date’s day, month, and year fields are encrypted separately).

There are certain computations CryptDB cannot support on 
encrypted data. For example, it does not support order compari-
son with a summation, such as WHERE salary > age + 10. One 
could support such a query by splitting it into different queries 
and having the proxy re-encrypt intermediate results.

Most other DBMS mechanisms, such as transactions and 
indexing, work the same way over encrypted data as they do 
over plaintext, with no modifications.

4. IMPLEMENTATION
The CryptDB proxy is built on top of mysql-proxy, and 
consists of a C++ library and a Lua module. The C++ library 
consists of a query parser; a query encryptor/rewriter, which 
encrypts fields or includes UDFs in the query; and a result 
decryption module. The query rewriter operates on the 
abstract syntax tree (AST) of the SQL query. Given an expres-
sion, the rewriter produces replacement expressions for 
the value of the original expression encrypted with differ-
ent encryption types (e.g., RND, DET, or just “plaintext”). 
We use NTL and OpenSSL for cryptographic operations. 
Our prototype consists of ~18,000 lines of C++ code and 
~150 lines of Lua code, with another ~10,000 lines of test 
code. CryptDB is portable; we have implemented versions 
for both Postgres 9.018 and MySQL 5. CryptDB requires 
only UDF support from the DBMS and does not change the 
DBMS server software.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate three aspects of CryptDB: what 
types of queries and applications does CryptDB support, 
what is the level of security that CryptDB provides, and what 
is the performance impact of using CryptDB?

We analyze the functionality and security of CryptDB 
on five applications and one large trace: phpBB (an open-
source Web forum application), HotCRP (a conference 
management system), grad-apply (the MIT EECS graduate 
admission application), Open-EMR (an electronic medical  
records application storing patient medical data), TPC-C 
(an industry-standard database benchmark), and a trace 
of SQL queries from a popular MySQL server at MIT, sql.
mit.edu. This server is used primarily by Web applications 
running on scripts.mit.edu, a shared Web application 
hosting service operated by MIT’s Student Information 
Processing Board (SIPB). In addition, this SQL server is used 
by a number of applications that run on other machines 
and use sql.mit.edu only to store their data. Our query trace 
spans about ten days, and includes approximately 126 mil-
lion queries over 1193 databases and 18,162 queries. Each 
database is likely to be a separate instance of an application. 
All these applications and the large SQL trace contain sen-
sitive information that should be protected (e.g., medical 
records, student grades, and private messages).

In the first four applications (not counting TPC-C and 
the large trace), we manually identify which columns are 
likely to be sensitive and encrypt only those. Some fields 
were clearly sensitive (e.g., grades, private messages, and 
medical information), but others were only marginally so 
(e.g., the time at which a message was posted). There was 
no clear threshold between sensitive or not, but it was clear 
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application to store the permissions in a different way would 
allow CryptDB to support such operations. The other 205 col-
umns perform string processing in the WHERE clause, such as 
comparing whether lowercase versions of two strings match. 
Storing a keyed hash of the lowercase version of each string for 
such columns, similar to the JOIN-ADJ scheme, could support 
case-insensitive equality checks for ciphertexts. Seventy-six 
columns are involved in mathematical transformations in the 
WHERE clause, such as manipulating dates, times, scores, and 
geometric coordinates. Forty-one columns invoke the LIKE 
operator with a column reference for the pattern; this is typi-
cally used to check a particular value against a table storing 
a list of banned IP addresses, usernames, URLs, etc. Such a 
query can also be rewritten if the data items are sensitive.

5.2. Security evaluation
To understand the amount of information that would 
be revealed to the adversary in practice, we examine the 
steady-state onion levels of different columns. To quantify 
the level of security, we define the MinEnc of a column to 
be the weakest onion encryption scheme exposed on any of 
the onions of a column when onions reach a steady state 
(i.e., after the application generates all query types, or after 
running the whole trace). We consider RND and HOM to be 
the strongest schemes, followed by SEARCH, followed by 
DET and JOIN, and finishing with OPE, which is the weak-
est scheme. For example, if a column has onion Eq at RND, 
onion Ord at OPE, and onion Add at HOM, the MinEnc of 
this column is OPE.

The right side of Figure 4 shows the MinEnc onion level 
for our applications and query traces. We see that most fields 
remain at RND, which is the most secure scheme, meaning 
that CryptDB leaks virtually nothing about most of the col-
umns. We believe this is a strong indication that CryptDB 
achieves high security for practical applications. For exam-
ple, OpenEMR has hundreds of sensitive fields describing 
the medical conditions and history of patients, but most of 
these fields are just inserted and fetched, and are not used 
in any computation, so they remain at RND. A number of 
fields also remain at DET, typically to perform key lookups 
and joins. Note that if the values encrypted with DET are 
distinct, DET is as secure as RND. OPE, which leaks order, 
is used the least frequently, and mostly for fields that are 

to us which fields were definitely sensitive. In the case of 
TPC-C and the large query trace, we encrypt all the col-
umns in the database to study the performance of a fully 
encrypted DBMS or understand which queries or columns 
are not supported.

We also evaluate the overall performance of CryptDB 
on the phpBB application and present a detailed analysis 
through microbenchmarks on a query mix from TPC-C.

5.1. Functional evaluation
To evaluate what columns, operations, and queries CryptDB 
can support, we analyzed the queries issued by the applica-
tions described above. The results are shown in the left half 
of Figure 4.

We find that CryptDB supports most queries; the num-
ber of columns in the “needs plaintext” column, which 
counts columns that cannot be processed in encrypted 
form by CryptDB, is small relative to the number of columns 
encrypted. For OpenEMR, CryptDB does not support que-
ries on certain sensitive fields that perform string manipu-
lation (e.g., substring and lowercase conversions) or date 
manipulation (e.g., obtaining the day, month, or year of an 
encrypted date). However, if these functions were precom-
puted with the results added as standalone columns (e.g., 
by encrypting the three parts of a date separately), CryptDB 
would support these queries.

On the large sql.mit.edu trace, we found that CryptDB should 
be able to support operations over all but 1094 of the 128,840 
columns observed in the trace. The “in-proxy processing” 
shows analysis results where we assumed that the proxy can 
perform some lightweight operations on the results returned 
from the DBMS server. Specifically, this includes operations 
that are not needed to compute the set of resulting rows, or to 
aggregate rows: that is, expressions that do not appear 
in a WHERE, HAVING, or GROUP BY clause, or in an ORDER BY 
clause with a LIMIT, and are not aggregate operators. With in-
proxy processing, CryptDB should be able to process queries 
over encrypted data over all but 571 of the 128,840 columns, 
thus supporting 99.5% of the columns.

Of those 571 columns, 222 use a bitwise operator in a 
WHERE clause or perform bitwise aggregation, such as the 
Gallery2 application, which uses a bitmask of permission 
fields and consults them in WHERE clauses. Rewriting the 

Figure 4. Steady-state onion levels for database columns required by a range of applications and traces. “Consider for encryption” indicates 
the columns that should be encrypted: as explained in Section 5, these are the columns deemed sensitive for the four applications, and all 
columns for the two traces. “Needs plaintext” indicates the number of columns that should be encrypted, but for which CryptDB cannot 
execute the application’s queries over encrypted data. MinEnc is defined in Section 5.2.

Consider

for enc.

Needs

plaintext

Non-plaintext cols. with MinEnc:

Application RND/SEARCH DET OPE

phpBB 23 0 21 1 1

HotCRP 22 0 19 1 2

grad-apply 103 0 95 6 2

OpenEMR 566 7 528 12 19

TPC-C 92 0 65 19 8

Trace from sql.mit.edu 128,840 1094 80,403 34,212 13,131

...with in-proxy processing 128,840 571 84,406 35,350 8513
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The throughput with CryptDB was 26% lower than that 
with plain MySQL on TPC-C. We believe this overhead is 
modest considering the gains in confidentiality. To under-
stand the sources of CryptDB’s overhead, we measure the 
server throughput for different types of SQL queries seen 
in TPC-C, on the same server, but running with only one 
core enabled. Figure 5 shows the results for MySQL and 
CryptDB. The results show that CryptDB’s throughput pen-
alty is the greatest for queries that involve a SUM (half the 
throughput) and for incrementing UPDATE statements 
(1.6 × less throughput); these are the queries that involve 
HOM additions at the server. For the other types of queries, 
which form a larger part of the TPC-C mix, the throughput 
penalty is lower.

To understand the latency introduced by CryptDB, we 
measure the server and proxy processing times for the 
same types of SQL queries as above. The server latency is 
0.12 ms, which is a 20% increase over the 0.10 ms latency 
of plain MySQL, which we consider to be small. The proxy 
adds an average of 0.60 ms to a query; of that time, 24% is 
spent on mysql-proxy, 23% is spent on encryption and 
decryption, and the remaining 53% is spent parsing and 
processing queries. The cryptographic overhead is rela-
tively small because most of our encryption schemes are 
efficient. OPE and HOM are the slowest, but we performed 
two optimizations: pre-computing randomness to speed 
up encryption for HOM, and caching ciphertexts for OPE. 
Without these optimizations, the proxy latency would have 
been 10.7 ms on average in our experiments, which is sig-
nificantly higher.

5.3.2. phpBB
We also evaluated the performance of CryptDB on phpBB, 
an open-source Web forum application. We measured the 
HTTP request processing throughput of a phpBB server 
using both CryptDB and a standard MySQL database. We 
encrypted only the sensitive fields as shown in Figure 4. We 
found that CryptDB reduced throughput by only 14.5%.

6. RELATED WORK
Search and queries over encrypted data. Cryptographic tools 
for performing keyword search over encrypted data have 
been proposed (e.g., Song et al.22 which we use to implement 
SEARCH). When applied to processing SQL on encrypted 
data, these techniques suffer from some of the follow-
ing limitations: certain basic queries are not supported or 
are too inefficient (especially joins and order checks), they 
require significant client-side query processing, users either 
have to build and maintain indexes on the data at the server 
or have to perform sequential scans for every selection/
search, and implementing these techniques requires unat-
tractive changes to the innards of the DBMS.

Some researchers have developed prototype systems for 
subsets of SQL, but they achieve lower security, require a sig-
nificant DBMS rewrite, and rely on client-side processing. For 
example, Hac gümüş et al.10 heuristically split the domain of 
possible values for each column into partitions, storing the 
partition number unencrypted for each data item, and rely 
on extensive client-side filtering of query results.

marginally sensitive (e.g., timestamps and counts of mes-
sages). This data demonstrates the importance of CryptDB’s 
adjustable security: it provides a significant improvement 
in confidentiality over revealing all encryption schemes to 
the server.

For the sql.mit.edu trace, approximately 6.6% of the col-
umns were at OPE even with in-proxy processing; the other 
encrypted columns remain at DET or above. Out of the 
columns that were at OPE, ~60% are used in an ORDER BY 
clause with a LIMIT, ~55% are used in an order compari-
son in a WHERE clause, and ~4% are used in a MIN or MAX 
aggregate operator (some of the columns are counted in 
more than one of these groups). It would be difficult to per-
form these computations in the proxy without substantially 
increasing the amount of data sent to it.

5.3. Performance evaluation
To evaluate the performance of CryptDB, we used a machine 
with two 2.4 GHz Intel Xeon E5620 4-core processors and 
12 GB of RAM to run the MySQL 5.1.54 server, and a machine 
with eight 2.4 GHz AMD Opteron 8431 6-core processors 
and 64 GB of RAM to run the CryptDB proxy and the clients. 
The two machines were connected over a shared Gigabit 
Ethernet network. The higher-provisioned client machine 
ensures that the clients are not the bottleneck in any experi-
ment. All workloads fit in the server’s RAM.

5.3.1. TPC-C
We compare the performance of a TPC-C query mix when 
running on an unmodified MySQL server versus on a 
CryptDB proxy in front of the MySQL server. We warmed up 
CryptDB on the query set so that there are no onion adjust-
ments during the TPC-C experiments. The server spends 
100% of its CPU time processing queries.

We consider two important metrics: database server 
throughput (number of queries per second that the server 
can process) and latency (time interval from when the 
application issues a query to when it receives the result).

Figure 5. Throughput of different types of SQL queries from the 
TPC-C query mix running under MySQL and CryptDB. “Upd. inc” 
stands for UPDATE that increments a column, and “Upd. set” stands 
for UPDATE that sets columns to a constant.
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Untrusted servers. SUNDR14 uses cryptography to provide 
privacy and integrity in a file system on top of an untrusted 
file server. Using a SUNDR-like model, SPORC5 shows how 
to build low-latency applications, running mostly on the 
clients, without having to trust a server. However, exist-
ing server-side applications that involve separate data-
base and application servers cannot be used with SPORC 
unless they are rewritten as distributed client-side appli-
cations. Many applications are not amenable to such a 
structure.

Companies like Navajo Systems and Ciphercloud provide 
a trusted application-level proxy that intercepts network 
traffic between clients and cloud-hosted servers (e.g., IMAP), 
and encrypts sensitive data stored on the server. In compari-
son, CryptDB supports a richer set of operations (most of 
SQL) and provides better security.

Disk encryption. Various commercial database products, 
such as Oracle’s Transparent Data Encryption,16 encrypt 
data on disk, but decrypt it to perform query processing. As 
a result, the server must have access to decryption keys, and 
an adversary compromising the DBMS software can gain 
access to the entire data.

Software security. Many tools help programmers either 
find or mitigate mistakes in their code that may lead to 
vulnerabilities, including static analysis tools like UrFlow,4 
and runtime tools like Resin.23 In contrast, CryptDB pro-
vides confidentiality guarantees for user data even if the 
adversary gains complete control over the application and 
database servers. These tools provide no guarantees in the 
face of this threat, but in contrast, CryptDB cannot pro-
vide confidentiality in the face of vulnerabilities that trick 
the user’s client machine into issuing unwanted requests 
(such as cross-site scripting or cross-site request forgery 
vulnerabilities in Web applications). As a result, using 
CryptDB together with these tools should further improve 
application security.

Query integrity. CryptDB does not ensure that the query results 
from the server are correct, but most existing techniques for 
SQL query integrity can be integrated into CryptDB because 
CryptDB allows relational queries on encrypted data to be pro
cessed just like on plaintext.

7. CONCLUSION
We presented CryptDB, the first practical system that can 
execute a wide range of SQL queries on encrypted data. Using 
SQL-aware adjustable encryption with multiple onions, 
CryptDB provides a strong level of confidentiality in the 
face of two significant threats confronting database-backed 
applications: compromises to the DBMS server by a passive 
adversary, and arbitrary compromises to the application 
server and the DBMS. CryptDB requires no changes to the 
internals of the DBMS. Our evaluation shows that CryptDB 
successfully handles a wide range of queries observed in 
practice, with a modest performance overhead. CryptDB’s 
Website (including papers and source code) is at http://css.
csail.mit.edu/cryptdb/.
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