
Delegating Network Security with More Information

Jad Naous
Stanford University

California, USA
jnaous@stanford.edu

Ryan Stutsman
Stanford University

California, USA

David Mazières
Stanford University

California, USA

Nick McKeown
Stanford University

California, USA
nickm@stanford.edu

Nickolai Zeldovich
MIT CSAIL

Massachusetts, USA
nickolai@csail.mit.edu

ABSTRACT
Network security is gravitating towards more centralized
control. Strong centralization places a heavy burden on the
administrator who has to manage complex security policies
and be able to adapt to users’ requests. To be able to cope,
the administrator needs to delegate some control back to
end-hosts and users, a capability that is missing in today’s
networks. Delegation makes administrators less of a bottle-
neck when policy needs to be modified and allows network
administration to follow organizational lines. To enable del-
egation, we propose ident++—a simple protocol to request
additional information from end-hosts and networks on the
path of a flow. ident++ allows users and end-hosts to par-
ticipate in network security enforcement by providing infor-
mation that the administrator might not have or rules to be
enforced on their behalf. In this paper we describe ident++

and how it provides delegation and enables flexible and pow-
erful policies.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations; C.2.2 [Computer-Communication Networks]:
Network Protocols

General Terms
Management, Security

Keywords
ident, firewall, network security, policy, management

1. INTRODUCTION
While network security policy is usually decided by a sin-

gle authority, the network administrator, that administrator
has usually had to configure myriad security devices, fire-
walls, and end-hosts. Gradually, the configuration of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WREN’09,August 21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-443-0/09/08 ...$10.00.

network has become more centralized, enabling an admin-
istrator to configure a consistent security policy at a single
location and have it enforced across various devices. Recent
proposals take centralization even further, proposing that al-
most all network features be pulled out of the datapath into
a central controller [6, 5, 8, 10, 1], giving the administrator
direct control over routing, mobility, and access control. We
expect this trend to continue.

While there are many advantages to centralizing the con-
trol of enterprise networks, such centralization places a heavy
burden on the administrator. She needs to manage an in-
creasingly complex set of rules, respond to user requests,
and handle network upgrades and extensions. The admin-
istrator becomes more prone to errors as security policies
become large and complex, and she becomes the bottleneck
when the need to alter policy arises. For instance, users
may need to configure their own machines over the weekend
(when the administrator may not be available). Depart-
ments may need to control their own policy (such as who
may access their servers) at a fine enough granularity that
the cost of having an administrator with different priorities
in the loop is intolerable.

And even when administrators are able to handle the full
network complexity, they often do not have the precise in-
formation they need to make a correct security decision. So
the administrators are forced to write coarse network secu-
rity policies that cripple legitimate use of the network. For
example, the administrator may wish to deny Skype access
to an important webserver but is unable to because Skype
and Web traffic both use destination port 80. This informa-
tion is usually only available at the end-hosts, and is often
unavailable when making security decisions.

Limited administrator resources and the over-broad se-
curity policies can harm productivity significantly and frus-
trate users, enticing them to bypass security protocols. How-
ever, these problems can be overcome by delegation. An ad-
ministrator in a large organization might want to delegate
some control to a department or site administrator, or might
want to delegate specific aspects of network policy to an end-
user. And while delegation was desired in previous network
architectures that were centrally managed, only more recent
architectures with strong central control make it possible to
delegate control (i.e. provide restricted privileges for others
to control parts of the network), log and audit the delegates’
actions, and revoke the delegation if needed. The admin-
istrator can finely tune the degree of delegation to balance
security concerns with productivity and morale needs.

We propose ident++, a protocol designed to help network
administrators delegate aspects of network security policy to
other decision-makers—end-hosts, users, applications, appli-
cation developers, or even trusted third-parties. ident++ is
simple; it is inspired by the Identification Protocol [14], but
is richer and more flexible. An ident++ daemon running
on senders and receivers responds to queries from ident++-
enabled decision-makers about flows. The response to a
query is a list of key-value pairs that can be used to pro-
vide information upon which the decision-maker can make
its decision. ident++-enabled decision-makers on the path
can also answer queries on behalf of end-hosts, or can modify
responses to add additional information.

Delegation in ident++ is two-fold: it involves the end-
hosts and users in classifying traffic and it allows them to
specify rules to be enforced in the network using the key-
value pairs. These pairs are mostly free-form and ident++

does not constrain the types that can be used. ident++

specifies a few—such as user, application name, hash of the
executable, and user-defined allow/drop rules—and it allows
administrators, users, and application developers to specify
their own.
ident++ allows policies to be described in terms of prin-

cipals rather than incidental flow properties, a position al-
ready advocated in [5]. In fact, any of the keys returned in
the ident++ response packet can be used as a principal giv-
ing greater flexibility than previous approaches. This allows
policies to be written free of network-level properties—such
as IP addresses and TCP port numbers—with which the
security policy is not concerned. For example, by blocking
port 25, the policy is trying to block SMTP traffic to recip-
ients who don’t want it, but the collateral damage is that
users who wish to use SMTP authentication cannot relay
mail through their own servers.

Our contributions are the following:

• A protocol to query senders, potential receivers, and
networks along the path for user-definable additional
information on a flow.

• Extending OpenBSD’s PF [2] language to enable con-
trolled delegation and flexible rules.

• A system design we intend to implement on Open-
Flow [12].

In §2, we provide an overview of how ident++ works.
Then we describe the design of ident++ in more details in
an OpenFlow network in §3, and present some policies and
applications that ident++ allows in §4. We give a brief secu-
rity analysis showing that ident++ in an OpenFlow network
is at least as secure as firewalls in §5. Finally, we discuss
some related work in §6 and conclude the paper in §7.

2. OVERVIEW
An ident++-protected network consists of ident++-enabled

firewalls and end-hosts. Firewalls can be the usual stan-
dalone networking middleboxes, or can be implemented us-
ing an Ethane network [5] or an OpenFlow network [12].
On the other hand, end-hosts run an ident++ daemon as a
server that receives queries on TCP port 783.

When a firewall encounters a packet belonging to a flow
that is not in its rule cache, it requests additional infor-
mation from both the source and the destination end-hosts.

Client

Switch

Server

Controller

1

2 4

5

3 3

Figure 1: Overview of ident++: 1. Client initiates

flow by sending packet, 2. First-hop switch forwards

packet to controller 3. controller requests additional

information using ident++ from both ends of flow, 4.

if controller approves, it installs entries along path

for flow, 5. packet proceeds to destination.

These steps are illustrated in Figure 1, where the firewall is
the combination of both the controller and switch.

A flow under ident++ is defined as the 5-tuple {IP des-
tination and source addresses, IP protocol, TCP or UDP
destination and source ports}. This 5-tuple is included in
the request to the ident++ daemon on the end-hosts. The
ident++ daemon’s response is a list of key-value pairs that
includes information such as the user ID of the user that ini-
tiated the flow on the source end-host or that would receive
the flow on the destination end-host, the hash and version
of the executable, rules specifying flows that the receiver
wants filtered, and more. ident++ does not limit the types
of key-value pairs possible and allows network administra-
tors, application developers, and users to define new keys.
The additional information is used together with the flow’s
5-tuple to consult the network administrator’s policy and
make a decision on whether to allow or drop a packet. In
certain situations, such as an OpenFlow or Ethane network,
the policy can use additional information such as a packet’s
ingress port or MAC addresses.
ident++ response and query packets can be intercepted

themselves by ident++-enabled firewalls. The firewalls can
answer the queries themselves or can modify response pack-
ets to insert additional information. When adding informa-
tion to a response packet, a ident++-enabled firewall adds
an empty line to delineate the information it has added from
that supplied by upstream firewalls.

Controlled Delegation.
ident++ allows an administrator to set coarse grained ac-

cess control policies, and delegate more fine-grained policies.
For example, the administrator might specify that machines
within a single department have unrestricted access to each
other. More fine-grained policies can then be specified by
department-local administrators and users. For instance,
one such policy might constrain access to a code repository
to developers in a specific department only.

In the rest of the paper, we will assume that firewalls are
implemented using an OpenFlow network. §3 gives a more

detailed description of ident++ running in an OpenFlow net-
work. We will give a more detailed, though not thorough,
account of security in §5. Below, we briefly describe the
threat model under which we operate.

Threat Model.
ident++ helps firewalls provide a first line of defense. We

assume that most users are “honest”. That is they do not
subvert the network’s security policy unless they find it that
the security measures are inconvenient and think it is safe
to bypass them. ident++ attempts to remove the incentives
for breaking security protocols by making network security
more convenient and accurate. However, users might inad-
vertently create security holes or allow their accounts to be
compromised. Attackers might be able to compromise end-
hosts, but it is more difficult to gain access as a super-user
or administrator than as non-privileged users. Finally, the
components of the network themselves can be attacked and
compromised, though these are more difficult targets than
end-hosts.

3. DESIGN
ident++ uses several ideas already encapsulated by Open-

Flow [12], so it is only natural that we describe our design
in the context of an OpenFlow network. We first give a brief
overview of OpenFlow, then we describe our policy language
PF+=2 , then the ident++ daemon that responds to queries,
and finally the ident++ controller.

3.1 OpenFlow
OpenFlow is a protocol that allows flow tables in switches

and routers to be remotely managed by an OpenFlow con-
troller. OpenFlow defines a flow as a 10-tuple {Ingress
port, MAC source and destination addresses, Ethernet type,
VLAN identifier, IP source and destination addresses, IP
protocol, transport source and destination ports}. Note that
this 10-tuple is a superset of ident++’s 5-tuple definition of
a flow (see §2).

The flow table in an OpenFlow switch maps from the 10-
tuple definition of a flow to an action to be taken on packets
belonging to that flow. These actions include dropping the
packet, forwarding it on a particular port or number of ports,
or sending the packet to the OpenFlow controller. An arriv-
ing packet that does not match any of the entries in the flow
table is encapsulated and sent to the OpenFlow controller
for inspection. When the OpenFlow controller makes a deci-
sion regarding what to do with all packets that have the same
10-tuple flow description, it adds an entry for that flow in
the switch’s flow table to cache its decision. The OpenFlow
controller can insert entries in switches across the network
preemptively so that this process is not repeated for every
switch at which the packet arrives.

In an ident++-protected OpenFlow network, the Open-
Flow controller uses ident++ to query end-hosts about flows
on which it needs to make a decision. The end-hosts run
an ident++ daemon that responds to queries using locally
stored configuration files that contain the key-value pairs to
be used. The controller uses the response packet and its own
configuration files to make an allow/drop decision.

3.2 Query and Response Formats
A query packet contains the flow’s 5-tuple and a list of

keys that the controller is interested in. The controller mak-

ing the query uses the flow’s destination IP address as the
query’s source IP address. The flow’s source and destina-
tion IP addresses can then be obtained from the query’s IP
header while the protocol and port numbers can be found
in the payload:

<PROTO> <SRC PORT> <DST PORT>

<key 0>

<key 1>

...

The list of keys in the query packet only provide a hint
for what the controller needs. The response may contain
additional unsolicited key-value pairs.

A reponse packet contains the flow’s 5-tuple, as in the
query, and a list of key-value pairs separated by line breaks.
The list is broken up into sections delineated by empty lines.
New sections correspond to key-value pairs from different
sources. For example, a new section can exist for pairs pro-
vided by the user, the application, or the local administrator.
New sections are also added by controllers augmenting the
response. A response packet looks like the following:

<PROTO> <SRC PORT> <DST PORT>

<key 0>: <value 0>

<key 1>: <value 1>

...

<newline>

<key n>: <value n>

...

3.3 PF+=2

We have extended OpenBSD’s PF [2] to provide a lan-
guage that is intuitive, extensible, and capable of including
externally provided rules. We illustrate PF+=2 first by ex-
ample:

table <mail-server> {192.168.42.32}

block all

pass from any \

with member(@src[groupID], users) \

with eq(@src[app-name], pine) \

to <mail-server> \

with eq(@dst[userID], smtp)

The above rule blocks all flows except those going to the mail
server where the sender is a member of the users group and
the user is using pine. In addition, the receiver must be the
smtp user.

PF provides a complete and convenient language for deal-
ing with flows concisely, including features like lists, macros,
address ranges, and port ranges. Here, we only describe a
small subset, and how we extended it. In vanilla PF, rules
are read in top-down order, with the last matching rule be-
ing executed. A matching rule can force its execution and
bypass later rules if it contains the quick keyword. The
quick keyword can help improve performance and ensure
that some rules are never overridden.

Each rule starts with an action. Currently, only two are
defined: pass and block, which respectively allow or deny
a flow1. The predicates to match follow the from and to

keywords and are specified as network primitives such as IP
addresses or TCP/UDP ports. The predicate from any to

1We do not currently use the log action.

any can be replaced with the all keyword. To store a list
of IP addresses, the table keyword can be used as in the
example above.

To create PF+=2, we first extend PF to parse and make
available the key-value pairs in ident++ responses. The re-
sponses from the source and destination are parsed to fill
@src and @dst dictionaries. Since responses can be aug-
mented by multiple controllers on the path, and keys can be
repeated in different sections of the response, indexing the
dictionaries will give the latest value added to the response.
The latest value is the most trusted (though not necessarily
the most trustworthy) because a controller can overwrite or
modify any responses that it sees.

Accessing the @src or @dst dictionaries by prepending a *

as in *@src[userID] returns a concatenation of the values in
all sections of the response packet. The concatenated value
can be used to check if a series of endorsements (such as a
network path) was followed or if a value changed between
networks.
PF+=2 extends PF by adding the dict and with keywords

and allowing function calls that return boolean results. The
dict keyword allows the definition of dictionaries. The with
keyword enables predicates that match on key-value pairs
returned in responses to the ident++ protocol queries.

Each with is followed by a function call that can operate
on values from the @src or @dst dictionaries. Functions
are user-definable and new functions can be added. The
following functions are predefined:

• eq, gt, lt, gte, lte return true if first argument =,
>, <, ≥, or ≤ second argument respectively.

• member tests if first argument is in list named by second
argument.

• allowed tests if flow is allowed by rule specified in argu-
ment.

• verify tests if first argument is the correct signature for
public key specified in second argument and data speci-
fied in remaining arguments.

The allowed function allows the administrator to include
rules provided by others. When combined with the verify

function, it effectively enables authenticated delegation. That
is, it allows a user or a trusted third-party to specify “good
behavior”. We will give examples of how these can be used
in §4.

3.4 ident++ Controller
When an OpenFlow switch cannot find a match for a

packet in its flow table, it sends the packet to the ident++

controller. When the controller receives the packet, it queries
the source and destination ident++ daemons for additional
information. The information is then stored in the @src and
the @dst dictionaries. The controller then executes the rules
that are stored in its configuration files.

The controller’s configuration files reside in a well known
location and have the .control extension. The files are
read in alphabetical order and their contents are concate-
nated. Some of these configuration files can be written by
the administrator, while others can be provided by applica-
tion developers or third-party security companies.

As was said earlier, ident++ controllers can intercept queries
and responses. However, intercepted queries are not allowed
to cause new queries. To respond to an intercepted query on
behalf of an end-host, the controller spoofs the IP address
of the end-host, sends a response itself, but does not for-

00-local-header.control

table <server> { 192.168.1.1 }

table <lan> { 192.168.0.0/24 }

table <int_hosts> { <lan> <server> }

allowed = "{ http ssh }" # a macro of apps

default deny

block all

allow connections outbound

pass from <int_hosts> \

to !<int_hosts> \

keep state

allow all traffic from approved apps

pass from <int_hosts> \

to <int_hosts> \

with member(@src[name], $allowed) \

keep state

50-skype.control

table <skype_update> { 123.123.123.0/24 }

skype to skype allowed

pass all \

with eq(@src[name], skype) \

with eq(@dst[name], skype)

skype update feature

pass from any \

to <skype_update> port 80 \

with eq(@src[name], skype) \

keep state

99-local-footer.control

no really old versions of skype

block all \

with eq(@src[name], skype) \

with lt(@src[version], 200)

no skype to server

block from any \

to <server> \

with eq(@src[name], skype)

Figure 2: Example controller configuration files, 00.

contains a number of definitions and the default

“block all” policy, 50. includes rules to enable the

network to allow skype traffic, 99. adds constraints

to the skype rules.

@app /usr/bin/skype {

name : skype

version : 210

vendor : skype.com

type : voip

requirements : \

pass from any port http \

with eq(@src[name], skype) \

pass from any port https \

with eq(@src[name], skype)

req-sig : 21oir...w3eda

}

Figure 3: Example ident++ daemon configuration file

snippet. The file lists the key-value pairs that should

be included in a response packet along with the pre-

defined ones.

ward the query. To augment an intercepted response with
additional information, the controller inserts an empty line
followed by the key-value pairs it wishes to add. The con-
troller can be configured to intercept queries and responses
using additional extensions in PF+=2 which we will not dis-
cuss in this paper.

Figure 2 shows three controller configuration files. 00-

local-header.control and 99-local-footer.control are
written by an administrator and specify site-specific rules.
50-skype.control describes a policy that allows the appli-
cation to function as intended. This last file would usually
be provided by the application developer or software dis-
tributor but could also be created, extended, and shared by
network administrators. While logically the files are con-
catenated and could be written as one file, they are split up
for manageability.

3.5 ident++ Daemon
End-hosts run a simple userspace ident++ daemon that

responds with the key-value pairs to controller queries. The
daemon can answer queries both when the end-host is the
source and when it is a destination that has yet to accept a
connection.

The ident++ daemon gets key-value pairs in two ways:
From configuration files statically and from the application
using a flow dynamically. Like the controller, the ident++

daemon has a number of configuration files residing in well
known locations on the end-host. These configuration files
contain the key-value pairs to be returned in a response.
Some configuration files can be modified by users to insert
their inputs to the system, while others reside in the system’s
configuration directory (such as “/etc/identxx” for Linux)
and are only modifiable by the local end-host administra-
tor. These configuration files can be written by the user or
administrator or can be obtained from the application de-
velopers, software distributor (in a GNU/Linux distribution,
for example), or by another trusted third-party. The config-
uration files can contain a signature key-value pair authen-
ticating other key-value pairs. Figure 3 shows an example.

The last source for key-value pairs is the application using
the flow. The application can provide key-value pairs to
the ident++ daemon at run-time. This mechanism can be
used by a web browser, for example, to distinguish between
flows that were initiated in response to user mouse clicks

research-app.conf

@app /usr/bin/research-app {

name : research-app

research-apps only talk to each other

requirements : \

block all \

pass all \

with eq(@src[name], research-app) \

with eq(@dst[name], research-app) \

req-sig : jsdfr...ipox7

}

Figure 4: Snippet from the ident++ daemon config-

uration file used for the research application.

30-research.control

dict <pubkeys> { \

research : sk3ajf...fa932 \

admin : a923jx...a12kz \

}

Allow only researchers to run applications

and only access their own machines.

Let reserachers specify what their apps need.

pass from <research-machines> \

with member(@src[groupID], research) \

to !<production-machines> \

with member(@dst[groupID], research) \

with allowed(@dst[requirements]) \

with verify(@dst[req-sig], \

@pubkeys[research], \

@dst[exe-hash], \

@dst[app-name], \

@dst[requirements])

Figure 5: Example rule that allows researchers to

run any application on their machines as long as it

conforms to their own rules, and does not access

production machines.

and others that are not requested by a user. These pairs are
sent to the ident++ daemon via a Unix domain socket.

The ident++ daemon uses the 5-tuple in the query packet
to find the process ID and user ID associated with the flow
using techniques similar to lsof. The daemon uses the pro-
cess ID to find the file name of the process’s executable im-
age. The file name is then used to locate the configuration
files to which it corresponds. The daemon reads the config-
uration files and the relevant key-value pairs are placed into
the corresponding sections in the response.

4. APPLICATIONS
Here we describe a few scenarios where ident++ allows

delegation, simplifies network management, and allows more
flexible policies.

Delegation to Users.
In some cases, especially in research networks, users run

their own applications and servers. It is tedious and time-

thunderbird.conf

@app /usr/bin/thunderbird {

name : thunderbird

type : email-client

rule-maker : Secur

requirements : \

block all \

pass from any \

with eq(@src[name], thunderbird) \

to any \

with eq(@dst[type], email-server)

req-sig : kaj7v...as1d3

}

Figure 6: Snippet from the ident++ daemon configu-

ration file for thunderbird supplied by a third-party.

consuming to ask the network administrator to open up new
ports in the firewall every time a new application needs to
be tested or a user installs a new application.

The user specifies the application’s network access require-
ments in the application’s ident++ daemon configuration
file as in Figure 4. In this example, the research applica-
tions are only allowed to communicate with other research
applications on non-production machines. The user signs
the requirements along with the application name and ex-
ecutable and puts the signature in the configuration file so
that an attacker cannot modify them or create new applica-
tion configuration files.

Figure 5 shows how a user can be given clearance to es-
calate her network privileges when needed without asking
the network administrator. The controller checks that the
flow to which the packet belongs is allowed by the signed
application requirements that are in the ident++ receiver
response packets using the allowed keyword, and by the
administrator’s policies using the from and to keywords.

Trust Delegation.
In the previous example, we showed how an administrator

can delegate control of part of the network to users and allow
them to run whatever they like, while still conforming to the
administrator’s coarse-grained policy. In this example, we
show how delegation could be used to allow users to run any
applications for which a third trusted party provides rules.
This third party can be a security company whose business
is to publish firewall rules for applications.

The ident++ daemon’s configuration file for the thunder-
bird application is shown in Figure 6. This file was pro-
vided be a third party security company called Secur. The
ident++ daemon on that machine responds to queries on a
flow started by thunderbird by including the key-value pairs
supplied by Secur, including Secur’s signature on the rule
for thunderbird. Figure 7 shows the rule responsible for
checking that an application has been approved by Secur.

User and Application-specific Rules.
The rule in Figure 8 allows a network administrator to

restrict access to important services and applications. The
rule only permits System users access to the Server service
and blocks any access from the Internet at large. In addition,
the destination operating system must have the latest patch

30-secur.control

dict <pubkeys> { \

Secur : a923jx...a12kz \

}

Allow users to run any applications approved

by Secur and following rules Secur provides

pass from any \

with eq(@src[rule-maker], Secur) \

with allowed(@src[requirements]) \

with verify(@src[req-sig], \

@pubkeys[Secur], \

@src[exe-hash], \

@src[app-name], \

@src[requirements]) \

to any

Figure 7: Example rule allowing users to run any

application as long as it conforms to rules specified

by Secur, a third-party security company.

installed. This rule can be used to stop the Conficker [3]
worm that attacks the Server service in Windows.

Network Collaboration.
Consider the case of two remote branches of the same

enterprise with end-hosts communicating over the Internet.
ident++ can be used to filter traffic at one branch that the
other branch would not accept. This can be used to mini-
mize traffic between the branches if the link is a bottleneck.
The controller modifies responses to queries and adds signed
rules that specify what the network at a branch is willing to
accept or it can request a flow be explicitly dropped.

Incremental Benefit.
It is not necessary that all components of the network

support ident++ for its benefits to be reaped. If only end-
hosts implement it, it can be used by servers to distinguish
users behind a NAT, or users on a single machine. On the
other hand, if the controllers implement it but not the end-
hosts, controllers can answer some queries on behalf of end-
hosts, and networks can still collaborate.

5. SECURITY IMPLICATIONS
ident++ on OpenFlow is not designed to be more secure

than non-ident++ firewalls. In this section we study the
security of an ident++-enabled network, and describe the
maximum damage an attacker can inflict by compromising
each component of the network. We compare the potential
damage done in a network protected by ident++-enabled
firewalls with that in a a network protected by vanilla fire-
walls.

5.1 Controllers
The most powerful component in the network is the ident++

controller. If the controller is compromised, an attacker can
disable all protection in the network. While non-ident++
firewalls are not usually managed by a centralized controller,
they usually use the same password or are clones of each
other allowing them to be compromised in the same way.
Protecting the controller is as important as protecting the

10-user-rules.control

default block everything

block all

only allow ‘‘system’’ users in the LAN

pass from <lan> \

with eq(@src[userID], system) \

to <lan> \

with eq(@dst[userID], system) \

with eq(@dst[name], Server) \

with includes(@dst[os-patch], MS08-067)

Figure 8: Example rule to allow the “System” user

access to the “Server” service inside the LAN and

only if the destination operating system has the lat-

est patch.

administrative interface of regular firewalls in a network, and
is comparable in difficulty.

5.2 Switches
Similar to compromising a single non-ident++ firewall,

compromising a single ident++-enabled switch can disable
the protection it affords. Any traffic would be able to pass
through the switch without regulation. However, compro-
mising a switch does not necessarily enable the compromise
of the controller.

5.3 End-Hosts
As in a vanilla firewall-protected network, a compromised

end-host in a ident++-enabled network, allows an attacker
with administrative priviliges to communicate with any other
end-host it was able to communicate with before the com-
promise. The attacker would gain control of the ident++

daemon and can send false ident++ responses.
It would seem that the attacker, in addition, can request

that the controller allow new flows to other destinations
when control is delegated. However, a request would re-
quire the approval of the user in whose name the request is
made because the request needs to be signed with the user’s
private key.

5.4 Users
A compromised application can masquerade as any other

application. The attacker can then gain the network privi-
leges associated with the user and any application the user
can run.

One way compromised processes can achieve this on a
Unix-like system is to exec other more privileged processes
then use the ptrace system call to subvert the exec’d pro-
cess. For stronger isolation the administrator can mark user
applications as setgid with a group that does not have any
file access. Processes executing with the setgid bit set in
this manner are protected against ptrace. The administra-
tor can arbitrarily subdivide and isolate user processes this
way.

If a user’s application is compromised then the user’s priv-
ileges can be abused under ident++. This situation, how-
ever, is an improvement over today’s firewalls. Current fire-
walls cannot identify users in traditional systems, so a com-
promise of a user’s application in today’s network grants the

attacker all the network privileges associated with all users.
On the other hand, in an ident++-protected network, as in
an Ethane protected network, compromising one user ac-
count does not allow the attacker to abuse another user’s
priviliges.

Currently, hosts emulate users as protection domains by
requiring superuser privileges to bind to ports below 1024.
This emulation is usually implemented by forking these pro-
cesses as the superuser before changing to a user with lower
privilege. The superuser is effectively endorsing applications
bound to privileged ports. ident++ makes these endorse-
ments explicit, sending them to the controller, and allowing
the controller to make a decision on the administrator’s be-
half.

6. RELATED WORK
Distributed firewalls [9] centralize the policy, and distribute

enforcement to firewalls implemented on the end-host. Dis-
tributed enforcement to the end-hosts frees the network from
relying on topology for protection and allows a host to use
additional information, as in ident++, to make the policy
decision. Unfortunately, the distributed firewalls approach
suffers from a number of problems. First, if enforcement is
done only at the receiving end-host in this way, the end-host
can become vulnerable to denial of service attacks. Second,
a compromised end-host effectively has no protection. The
central administrator’s policies are completely bypassed. Fi-
nally, distributed firewalls do not solve the delegation prob-
lem and their policies are written in terms of incidental flow
properties and network primitives rather than principals. By
contrast, ident++ centralizes the policy as in distributed
firewalls, but only uses end-hosts to extract additional in-
formation. It keeps enforcement in the network where it can
be done at line-rate and closer to the source.

Ethane [5] provides administrators with centralized con-
trol of network flows in an enterprise network. However,
it forces the administrator to make security decisions based
on the source and destination’s physical switch ports and
network primitives, and not on any application-level infor-
mation.

The ident protocol [14] was originally used by one end-
point of a TCP connection to identify the user responsible
for the remote end-point. This information was typically
used for auditing purposes, such as tracking down a compro-
mised account that was sending spam. This paper expands
on the idea of the ident protocol to provide much richer in-
formation about connections; to allow intermediate network
elements to provide additional information about connec-
tions; and to use this information for firewall decisions in
the network.

VPNs and VLANs are used extensively in enterprise net-
works to separate “trusted” traffic from the rest of the In-
ternet, or to separate different applications or workloads on
the same enterprise network. Using VLANs and VPNs re-
quire users and administrators to partition the traffic on
each client machine ahead of time, or to assign switch ports,
and thus entire machines, to specific VLANs. ident++ lets
users and administrators control network use at a finer gran-
ularity, potentially allowing controlled interaction between
different applications, which would be difficult to achieve
if each application were using its own VLAN. At the same
time, we expect ident++ would be used in conjunction with
VPNs and VLANs, which provide stronger enforcement in

situations where the client machines might be malicious or
compromised.

DStar [15] allows individual machines to communicate in-
formation flow restrictions for the contents of network mes-
sages to each other. While DStar allows two cooperating
machines to isolate the network communication of multiple
applications running on each machine from one another, it
does not export higher-level information about the flows to
the network administrator, and thus does not allow the net-
work administrator to specify firewall rules for applications.

Multi-level secure networks [11, 13, 7, 4] allow sharing a
single physical network between different applications that
should not be able to leak data to one another. These sys-
tems provide stronger isolation than ident++. Much like
VLANs, these systems require each machine to categorize its
network messages ahead of time, e.g. “secret”, “top secret”,
etc, leaving the network administrator with no information
as to what application originated any particular connection.
While this model may be appropriate for military applica-
tions, ident++ gives the network administrator much more
information about the traffic on the network that can be
used as a basis for filtering.

7. CONCLUSION
Delegating control and trust to end-hosts and users al-

lows flexible and more powerful management of an enterprise
network. With network security heading towards more cen-
tralized control, administrators will want to delegate some
control back to users and end-hosts. ident++ is a simple
proposal for a system that gives administrators the ability
to delegate control and to override, audit, and revoke the
delegation when necessary. ident++ enables policies and so-
lutions that are otherwise not possible to achieve.
ident++ allows a policy to be written in terms of prin-

cipals that security is concerned with—users, applications,
versions, etc. It allows a trusted third-party to specify rules
which a user can provide without worrying whether the ap-
plication is behaving correctly or not.

While some might consider security paramount to user
convenience, making security too tight and inconvenient can
hamper productivity and cost an enterprise valuable time
and employee morale. On the other hand, delegating con-
trol under close supervision allows the administrator to treat
security problems as the less common case, and allows her
to retain full power over the network.

Acknowledgments
This research was performed under an appointment to the
U.S. Department of Homeland Security (DHS) Scholarship
and Fellowship Program, administered by the Oak Ridge
Institute for Science and Education (ORISE) through an
interagency agreement between the U.S. Department of En-
ergy (DOE) and DHS. ORISE is managed by Oak Ridge As-
sociated Universities (ORAU) under DOE contract number
DE-AC05-06OR23100. All opinions expressed in this paper
are the author’s and do not necessarily reflect the policies
and views of DHS, DOE, or ORAU/ORISE.

8. REFERENCES
[1] Aruba networks. http://www.arubanetworks.com.

Last accessed on 3/18/2009.

[2] PF: The OpenBSD Packet Filter, Jan. 2008.
http://www.openbsd.org/faq/pf/.

[3] Virus alert about the win32/conficker.b worm.
http://support.microsoft.com/kb/962007, Mar. 2009.

[4] J. P. Anderson. A unification of computer and
network security concepts. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 77–87,
Oakland, CA, 1985.

[5] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. McKeown, and S. Shenker. Ethane: taking control
of the enterprise. ACM SIGCOMM Computer
Communications Review (CCR), 37(4):1–12, 2007.

[6] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman,
D. Boneh, N. McKeown, and S. Shenker. SANE: a
protection architecture for enterprise networks. In
USENIX-SS’06: Proceedings of the 15th conference on
USENIX Security Symposium, Berkeley, CA, USA,
2006. USENIX Association.

[7] D. Estrin. Non-discretionary controls for
inter-organization networks. In Proceedings of the
IEEE Symposium on Security and Privacy, pages
56–61, Oakland, CA, 1985.

[8] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A
clean slate 4d approach to network control and
management. ACM SIGCOMM Computer
Communications Review (CCR), 35(5):41–54, 2005.

[9] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and
J. M. Smith. Implementing a distributed firewall. In
CCS ’00: Proceedings of the 7th ACM conference on
Computer and communications security, pages
190–199, New York, NY, USA, 2000. ACM.

[10] D. A. Joseph, A. Tavakoli, and I. Stoica. A
policy-aware switching layer for data centers. ACM
SIGCOMM Computer Communications Review
(CCR), 38(4):51–62, 2008.

[11] J. McHugh and A. P. Moore. A security policy and
formal top-level specification for a multi-level secure
local area network. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 34–39,
Oakland, CA, 1986.

[12] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: Enabling innovation in campus
networks. ACM SIGCOMM Computer
Communications Review (CCR), 38(2):69–74, 2008.

[13] D. P. Sidhu and M. Gasser. A multilevel secure local
area network. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 137–143, Oakland,
CA, 1982.

[14] M. C. St. Johns. Identification protocol. RFC 1413,
Network Working Group, February 1993.

[15] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières.
Securing distributed systems with information flow
control. In Proceedings of the 5th Symposium on
Networked Systems Design and Implementation, pages
293–308, San Francisco, CA, April 2008.

