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ABSTRACT
This paper presents rtlv, an approach for push-button formal veri-
fication of properties that involve software running on hardware for
many cycles. For example, rtlv can be used to prove that executing
boot code resets a processor’s microarchitectural state to known
deterministic values, while existing tools time out when attempting
to verify such a property.

Two key ideas enable rtlv to handle reasoning about many cy-
cles of circuit execution. First, rtlv uses hybrid symbolic execution
to reason about a circuit with symbolic values while minimizing the
complexity of symbolic expressions; this is achieved by compiling
circuits to programs in the Rosette solver-aided language. Second,
rtlv enables the development of reusable circuit-agnostic property
checkers that have a performance hint interface, allowing developers
to optimize verification performance while maintaining confidence
that the proof is correct.

Using rtlv, formally verifying a state-clearing property for a
small (1,300 flip-flop) RISC-V SoC takes only 1.3 seconds, while
SymbiYosys, a popular open-source verification tool, is unable to
finish within 12 hours. In another case study, rtlv scales to a larger
4,300 flip-flop RISC-V SoC where verifying this state-clearing prop-
erty requires modeling over 20,000 cycles of software executing
on hardware. Formal verification with rtlv helped us find and fix
violations of the property in the baseline hardware, demonstrating
that rtlv is useful for finding bugs.

1 INTRODUCTION
Formally verifying digital hardware allows developers to increase
their confidence in a system’s security and correctness. Many ex-
ample uses of popular hardware verification tools involve checking
properties that can be verified after executing for a small number
of cycles [16]. However, these tools are unable to efficiently verify
properties that require executing for many cycles, making it diffi-
cult to use the tools for reasoning in a cycle-accurate manner about
software running on the hardware.

For example, suppose a developer wants to verify that boot code
executing after reset clears all microarchitectural state in a CPU.
This requires modeling the complete execution of this boot code
from an initially unconstrained circuit state and performing a solver
query on the final state. For the PicoRV32 [17], a simple RISC-V
CPU, verifying this property requires executing 104 cycles of boot
code. Using SymbiYosys [14], a popular open-source hardware veri-
fication tool, the solver query resulting from unrolling 104 cycles
of circuit execution is unable to finish within 12 hours.

This paper presents rtlv, an approach for verifying circuits that
enables efficient cycle-accurate reasoning about software executing
on hardware.With rtlv, modeling 104 cycles of boot code execution
and verifying that all state is cleared in the PicoRV32 takes only 1.3
seconds.

rtlv efficiently handles many cycles of execution by symboli-
cally executing the circuit while maximizing the amount of circuit
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Figure 1: The rtlv workflow. A user develops a circuit-
agnostic property checker (yellow) that takes in a circuit
model and performance hints that suggest optimizations.
The user then inputs a particular circuit’s Verilog code
(white), mechanically transformed into a Rosette model
by rtlv’s compiler, along with circuit/property-specific per-
formance hints (purple) that suggest optimizations. The
checker returns “OK” if it is able to verify that the property
holds.

state that remains concrete and minimizing the complexity of sym-
bolic expressions in the circuit state. rtlv accomplishes this through
a verification workflow, shown in Figure 1, based on two key ideas.
First, the developer uses rtlv to compile the circuit to Rosette [15], a
domain specific language for solver-aided programming embedded
in Racket. This lets developers verify the circuit using Rosette and
take advantage of Rosette’s unique symbolic execution approach
and rewrite rules. Second, the developer builds a circuit-agnostic
property checker that has an interface for supplying performance
hints. These hints suggest certain optimizing transformations of
the circuit state. The property checker is responsible for ensuring
that these optimizations do not affect the correctness of the proof,
resulting in a smaller core of trusted code. To verify the circuit, the
developer invokes the property checker with the extracted circuit
model as well as a list of performance hints. Overall, Rosette’s sym-
bolic execution system and performance hint optimizations result
in simpler solver queries compared to those produced by tools like
SymbiYosys, which improves verification performance.

This paper provides an overview of rtlv, and contributes the
following:

• A description of rtlv’s Verilog to Rosette compiler.
• An example circuit-agnostic property checker, rtlv/shiva,
that can be used for verifying a security property similar
to the microarchitectural state clearing property described
above.
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picorv32 cpu1(...);
picorv32 cpu2(...);

if (cycle_count == 104) begin
assert(cpu1.reg1 == cpu2.reg1);
assert(cpu2.reg2 == cpu2.reg2);
// ... repeat for each register in picorv32

Figure 2: Verification pseudocode using SymbiYosys. This
tool requires an encoding with two copies of the CPU that
are initially unrelated, along with an assertion that their
state must be equal after the boot code runs.

• A case study using rtlv/shiva to verify a real-world RISC-V
SoC based on the OpenTitan, demonstrating that rtlv’s
approach can be scaled to complex hardware and can be
used for finding bugs in practice.

2 EXAMPLE: DETERMINISTIC START
Deterministic start is an example of a property where verification
involves cycle-accurate reasoning over many cycles, often about
software running on hardware. If a circuit satisfies deterministic
start, then its internal state, including microarchitectural state, is
fully cleared to deterministic values by boot code that runs on
reset [2].

We use deterministic start as a motivating example for using
rtlv over existing tools for verifying circuits. We performed an
experiment where we set up both rtlv and SymbiYosys, a popular
open-source hardware verification tool, to prove deterministic start
for the PicoRV32 CPU. As shown in Figure 2, we encoded this
property in SymbiYosys by instantiating two copies of the PicoRV32
and adding assertions that each register in the one copy is equal to
the corresponding register in the other copy (i.e., there is only one
possible value that the register can take on) after the boot code runs.
We then configure SymbiYosys to use its Yosys-SMTBMC backend
to model all 104 cycles of boot code execution and verify that these
assertions hold.

Using rtlv, instead of writing verification code in Verilog, devel-
opers write code in Rosette, a solver-aided programming language
embedded in Racket. rtlv provides a system for compiling cir-
cuits into a Rosette model. In order to verify deterministic start
for the PicoRV32, a developer can instantiate a fully unconstrained
PicoRV32 circuit state, call the circuit’s step function 104 times,
and then check the resulting circuit state to verify that it must be
deterministic. Because Rosette provides solver-aided queries (effec-
tively, direct access to the SMT solver), the rtlv-based approach
can verify this property without instantiating two instances of the
circuit and comparing them. As shown in Figure 3, the verification
code can instead invoke the SMT solver once to find one concrete
state that the circuit can be in after the boot code runs, and then
invoke the solver again to prove that the state must be equal to that
single concrete state. This more efficient check is enabled by the
ability to make intermediate solver queries to build up a final solver
query, which is not possible in SymbiYosys.

With these setups, the SymbiYosys proof does not finish within
a 12-hour timeout, while the rtlv proof finishes within 1.3 sec-
onds. To demonstrate how SymbiYosys’s verification time scales,
we proved a related state-clearing property for varying numbers

is_deterministic(state):
# extract all symbolic variables in state
sym_vars = symbolics(state)

# generate mapping of sym_vars to one possible
# set of concrete values
solution = solve(sym_vars)

# evaluate state under this mapping
# to generate concrete state
concrete_state = evaluate(state, solution)

# assert that state must equal the concrete
# solution, i.e. if state is deterministic, it
# *must* equal the solution 'concrete_state'
verify(assert(state == concrete_state))

Figure 3: Verification pseudocode using rtlv, verifying the
property without instantiating two circuit states. The code
first calls the solver to generate some possible concrete state
and then verifies that the symbolic state must always equal
this concrete state.
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Figure 4: Scalability of verifying deterministic start. Symbi-
Yosys scales exponentially; results truncated after 32 cycles.
rtlv scales linearly and takes 1.3 seconds to verify the prop-
erty for 104 cycles.

of cycles, showing that a subset of registers were cleared after the
appropriate number of cycles. Figure 4 shows the runtime of verify-
ing each property against the number of cycles it took to verify that
property. This plot illustrates how SymbiYosys’s runtime increases
exponentially with the number of cycles, while rtlv’s runtime
is relatively flat: in this particular case, rtlv’s time is linear in
the number of cycles. Code for this experiment can be found at
https://github.com/anishathalye/deterministic-start-benchmark.

This example shows that in order to verify properties such as
deterministic start, rtlv’s approach doesn’t suffer from the same
scaling bottlenecks as SymbiYosys. The next section describes what
these bottlenecks are and how rtlv eliminates them.

3 VERIFICATION APPROACH
rtlv verifies circuits using the Rosette solver-aided programming
language, taking advantage of Rosette’s symbolic execution ap-
proach in order to generate a more efficient low-level encoding
of the property being verified as compared to existing tools like
SymbiYosys.

https://github.com/anishathalye/deterministic-start-benchmark
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3.1 SMT-based verification
Formal verification differs from traditional hardware verification: it
involves proving that certain properties always hold, rather than
checking that a circuit behaves as expected over a concrete (and
often hand-designed) set of test vectors.

SMT-based formal verification, a popular approach for verify-
ing hardware, works by encoding a model of the circuit and the
property being proven into a boolean expression called an SMT
query. Verification queries are expressed in the negative, meaning
the query evaluates to true if the property is violated. In order to
verify the property, the tool passes the query into an SMT solver
like Z3 [5], which attempts to determine whether there is an assign-
ment of values to the variables in the query that makes the query
evaluate to true. If the solver determines the query is unsatisfiable,
this proves the property, because there is no possible assignment
that makes the query evaluate to true (i.e. violates the property).

Complex SMT queries result in bad performance or solver time-
outs, so in order for a verification tool to efficiently prove a property,
it must produce a “good” SMT encoding. In the case of properties
that require executing for many cycles, rtlv’s approach, building
on Rosette’s symbolic execution, generally produces better SMT
encodings than existing work.

3.2 Symbolic execution with Rosette
To enable reasoning about circuits using Rosette, rtlv includes a
Verilog to Rosette compiler, which works as follows. First, a cir-
cuit’s Verilog source is passed into the Yosys [18] synthesis tool,
which generates an SMT-LIB representation of the circuit. A domain-
specific language (DSL) provided by rtlv, called #lang yosys, then
transforms Yosys’s SMT-LIB output into Rosette code. Yosys’s front-
end only supports Verilog, so if the circuit is written in a different
HDL, it must be converted into an equivalent Verilog representation.
We use sv2v [13] for converting circuits written in SystemVerilog.

Both rtlv and SymbiYosys rely on Yosys’s SMT-LIB backend for
producing a circuit model for verification. The key distinction be-
tween the two approaches is how this model is used. As-is, Yosys’s
output describes the behavior of the circuit on each clock cycle as
a transition relation. This is a function that takes in two circuit
states—a current state and a next state—and returns a boolean indi-
cating whether or not the next state can be reached by stepping the
current state. Expressing the circuit transition as a relation allows
SymbiYosys’s Yosys-SMTBMC backend to encode execution into
the solver query directly.

For example, supposewewant to prove that a circuit satisfying an
initial predicate I , after n cycles, satisfies some predicate P . Suppose
that the transition relation between circuit states si and sj is written
as T (si , sj ). For this task, SymbiYosys will produce an SMT query
with variables s0, s1, . . . , sn and the following assertion:

assert(I (s0) ∧T (s0, s1) ∧T (s1, s2) ∧ · · · ∧T (sn−1, sn ) ∧ ¬P(sn ))

Empirically, SMT solvers exhibit poor performance when rea-
soning about long chains of T (s0, s1) ∧ · · · ∧T (sn−1, sn ).

Instead of using the transition relation directly in the SMT encod-
ing, rtlv transforms the transition relation into an imperative step
function that allows for symbolic execution. This is always possible
because we operate on a circuit with a single clock domain with
all nondeterminism (such as don’t-cares) resolved, so the behavior
of the circuit is a total function. This transformation is performed

by rtlv’s #lang yosys DSL, which transforms Yosys’s SMT-LIB
encoding of the circuit into Rosette code, producing a shallow em-
bedding in Rosette through the use of Racket macros. The code
defines:

• A Rosette struct that represents circuit state, which includes
fields for all registers, memories, and current input values.

• The step function, which takes a circuit state and returns
a new circuit state representing the result of running the
circuit for one clock cycle.

• Functions for setting the inputs to a circuit and functions for
getting the outputs from a circuit.

These definitions let us use Rosette to execute the circuit instead
of encoding execution into the SMT query itself. At the very end of
the execution, Rosette is able to construct a solver query that only
considers the final circuit state, regardless of execution length, in
contrast with the SymbiYosys encoding.

The example above would be encoded as follows. Let step(s) be
the step function. rtlv initializes s0 to be a fresh symbolic variable,
and then performs the following computation:

s1 = step(s0) (Symbolic execution)
s2 = step(s1)
. . .

sn = step(sn−1)

assert(I (s0) ∧ ¬P(sn )) (Solver query)

In contrast to SymbiYosys’s approach, the final query size does
not inherently scale with the number of cycles of execution, and the
query does not directly require the SMT solver to reason about the
circuit’s execution. Instead, the circuit’s execution is computed in
Racket/Rosette, which can take advantage of performing concrete
computations directly in Racket as opposed to building up large
terms for the solver to reason about. Thanks to Rosette’s rewrite
rules and rtlv’s performance hints (described in Section 4.1), such
opportunities occur often and result in significant speedup.

rtlv’s approach is well suited to applications where much of
the circuit state is concrete—for instance, applications modeling
the execution of known software with concrete control flow. If the
circuit state is primarily symbolic, each step will result in rapidly
growing complexity in the circuit state’s symbolic expressions, ul-
timately leading to a large final solver query (in this case, neither
the SymbiYosys encoding nor the rtlv encoding will give good
performance).

Deterministic start is a good example of a property well-suited
to rtlv’s approach. The boot code is known, and its control flow
is not dependent on unconstrained values, so the program counter
is concrete on each cycle. In addition, by the nature of what the
boot code does, the final circuit state will likely contain mostly or
even solely concrete terms, because the entire circuit state becomes
deterministic. Therefore, the verification runtime is dominated by
symbolic execution time rather than the final solver query.

rtlv benefits from several design features in Rosette. The first is
Rosette’s hybrid symbolic execution model, which performs “type-
driven state merging” [15] to merge values at control-flow joins,
avoiding problems with path explosion found in traditional sym-
bolic execution. In addition, Rosette has “rewrite rules”, which are
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heuristics to simplify symbolic expressions on the fly before they
reach the solver.

As an example of how these two features can simplify sym-
bolic execution, suppose a circuit has a 2-to-1 multiplexer, and
consider a situation where each input is a concrete zero, but the
select input is symbolic. A multiplexer represents the equivalent
of a branch in software — a traditional symbolic execution sys-
tem would separately evaluate a path for each possible value of
the select input. However, Rosette’s state-merging explores both
branches and then merges their results into a single symbolic ex-
pression such as (ite select 0 0). While SymbiYosys would
have the solver reason directly about this term, Rosette’s rewrite
rules further simplifies this to 0, since both branches are zero.

Another example of a rewrite rule simplification would be in
instances where a circuit extracts a concrete bit from a concatenated
concrete and symbolic value. For example, given a 5-bit symbolic
foo, the expression (extract 7 7 (concat 000 foo)) will be
simplified by Rosette to 0.

Rewrite rules give rtlv more efficient symbolic execution that
results in smaller symbolic expressions in the final circuit state,
resulting in smaller SMT queries.

4 CASE STUDY
As a case study, we used rtlv to verify a security property called
output determinism for a complex SoC based on a subset of Google
and lowRISC’s OpenTitan [8]. This case study demonstrates how
we applied rtlv to a more complex verification task by creating a
circuit-agnostic property checker called rtlv/shiva that allowed
us to implement peephole optimizations in a disciplined way. In ad-
dition, this case study shows that rtlv can be used to find violations
of security properties in practice.

If a circuit satisfies output determinism, its outputs must not
depend on data present in the circuit state prior to reset. Output
determinism is implied by deterministic start: one way to ensure a
circuit satisfies output determinism is by clearing all circuit state on
reset, so that no data that was present in the circuit prior to reset
remains in the circuit anymore. Therefore, both properties can be
proven by modeling the execution of boot code and verifying that
uninitialized data has been cleared from the circuit state. However,
output determinism does not require that all circuit state is reset
to deterministic values: it allows state to depend on input data.
This makes checking this property more complex, since it involves
tracking a set of “allowed dependencies” (i.e. all inputs received
over the course of execution), and verifying that the circuit’s state
post-boot code execution only relies on these allowed dependencies.

We prove this property for a RISC-V SoC we call MicroTitan,
which is based on a subset of an existing project called OpenTitan.
Figure 5 shows a block diagram of the circuit. It includes the Ibex
CPU, 8KB of ROM, 8KB of RAM, and UART, SPI device, and USB
device peripherals. MicroTitan includes multiple clock domains that
we verified separately, but this case study focuses on the “core clock
domain.” The core clock domain contains the Ibex CPU, memories,
UART, and slices of the SPI and USB peripherals. To satisfy output
determinism, the hardware in this clock domain must execute boot
code to clear certain state, and to verify this property, we must
model this boot code execution.

MicroTitan’s core clock domain is more complex than the Pi-
coRV32 CPU, and its boot code takes a correspondingly longer time

Ibex CPU ROM  
(8 KB)

xbar

UARTUSBSPI

Core Clock Domain

RAM  
(8 KB)

Figure 5: A block diagram of MicroTitan, with its core clock
domain highlighted.

to execute. The bulk of this additional execution time comes from
the uninitialized memories in MicroTitan that must be explicitly
reset by loops in the boot code. Clearing the MicroTitan’s uninitial-
ized state takes 24,516 cycles of boot code execution, compared to
only 104 for the PicoRV32. In addition, the MicroTitan circuit itself
is more complex, consisting of around 4,300 flip-flops as compared
to around 1,300 flip-flops in the PicoRV32. This means that solver
queries about MicroTitan’s state are likely to be more complex than
queries about the PicoRV32.

4.1 Performance hints
In this case study, Rosette’s symbolic execution system alone couldn’t
provide sufficient performance, since MicroTitan’s state contains
symbolic terms that grow rapidly over time and cannot be simpli-
fied by rewrite rules, which are heuristics and cannot be “complete.”
Therefore, we had to implement circuit-specific optimizations to
make verification feasible. To do so in a disciplined way, we built a
circuit-agnostic property checker called rtlv/shiva which takes
in the Rosette circuit model (which includes components such as
the step function and register names), executes the circuit based on
the model provided, and returns whether or not the circuit satisfies
output determinism. In addition, rtlv/shiva has a performance
hint interface that allows a developer to suggest that the checker
transform the circuit state in a certain way, generally to reduce the
size of symbolic expressions and therefore simplify both symbolic
execution and the final solver query.

A key idea is that rtlv/shiva is sound, and the hints are un-
trusted, meaning that no matter what hints a developer specifies,
the tool will not erroneously say that a property holds when it does
not. Supplying inadequate or incorrect hints can only harm per-
formance or make the tool fail to prove the property. Performance
hints cannot be misused to make the tool erroneously report “OK”.
This enables a workflow where the developer can freely experiment
with performance hints without worrying about invalidating the
proof.

The verification tool itself is considered trusted since we assume
it enforces this property. By encapsulating the trusted code for trans-
forming circuit state in a non-circuit-specific tool, the developer
can apply performance hints as needed while maintaining high
confidence in the proof’s correctness. In addition, this separation
allowed us to reuse rtlv/shiva for multiple circuits: we used this
checker to verify output determinism for the MicroTitan as well as
the PicoRV32.
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Hint Description

abstract
[field-name]

Checks if field only depends on allowed
dependencies—if so, replaces it with a fresh
symbolic (added to allowed dependencies).

overapproximate
[field-name]

Replaces field with a fresh symbolic.

abstract-or-
overappprox-vector
[field-name]

For each entry of a memory field, abstracts it
if it only depends on allowed dependencies,
and otherwise overapproximates it.

collect-garbage Forces GC run.

concretize
[field-name]

Determines using a solver query if field only
evaluates to a single concrete value—if so,
replaces it with this concrete term.

run-and-replace
[list-of-field-names
list-of-hints]

Re-runs verification from initial state to cur-
rent cycle, using the provided list of hints.
At the end of this sub-execution, replaces
the given fields in the main execution with
their values from the secondary execution.

Table 1: Performance hints [arguments in brackets] imple-
mented by rtlv/shiva.

One of rtlv/shiva’s performance hints is concretize. This
hint takes in the name of a field in the circuit state, checks if the
field can only evaluate to a single concrete value by issuing a solver
query, and replaces it with that concrete value if so. The solver
query ensures that this hint cannot be misused to transform the
circuit state in an incorrect way. Relying on the solver allows a
hint like concretize to be more powerful than rewrite rules. As
an example, consider the symbolic expression (ite a 0 a) 1. This
expression is always equal to 0, since it returns 0 when a equals
1, and a when a equals 0 itself. However, Rosette has no built-in
rewrite rule for this. If rtlv/shiva is told to apply concretize to
a field containing this expression, it will set the field to 0.

Performance hints are also useful since they can take advan-
tage of the specific property being verified, and therefore be more
specific than general optimizations such as Rosette’s rewrite rules.
For example, rtlv/shiva supports a hint called abstract that de-
termines if a field only depends on allowed dependencies, and, if
so, replaces that field with a fresh symbolic value that itself gets
added to the set of allowed dependencies. This is sound since we
can always overapproximate a value (i.e., set it to a completely
unconstrained fresh symbolic) and the dependency check main-
tains the invariant that values in the allowed dependencies set only
depend on previous inputs. However, a symbolic value being an
“allowed dependency” is only meaningful in the context of output
determinism, so this hint is inherently property-specific. In addition
to concretize and abstract, rtlv/shiva supports several more
hints, described in Table 1.

Without performance hints, verification of MicroTitan would
time out. One example of a critical performance hint is the use of
concretize on the state register controlling the SPI peripheral’s
RX FIFO state machine. This hardware state machine is responsible
for gathering data the SoC receives via SPI and writing it into a
1In actual Rosette code: (if (bveq x (bv #b1 1)) (bv #b0 1) x)

memory where it can be consumed by software. Since output deter-
minism doesn’t assume anything about SoC inputs while boot code
is executing, all SPI inputs are represented as symbolic data. These
inputs affect state transitions in the SPI state machine, resulting
in the state machine control register itself becoming a symbolic
term. In addition, since the new state on each cycle depends on the
previous state, the size of the symbolic term representing this state
grows rapidly each cycle if left unchecked.

However, it turns out that independent of inputs, after 150 cycles
of boot code execution, this state machine returns to an idle state,
and it does not leave this state for the remainder of the execution.We
take advantage of this fact by applying a concretize hint to the state
machine control register on cycle 150, which causes rtlv/shiva to
verify that the register must be idle and then replace the symbolic
term with a concrete term. Once back to the concrete idle state, the
register is able to remain concrete for the rest of the execution.

In addition to performance hints, rtlv/shiva supports a gen-
eral interface called unsafe-custom-hint for user code to directly
implement transformations of the circuit state. This was useful for
this case study, since it allowed us to implement a complex trans-
formation on each cycle based on the relationship between two
registers. The exact transformation was circuit-specific and could
not be easily generalized, so it was best implemented in user verifi-
cation code. Like a performance hint, the code that implemented
the transformation performed auxiliary solver queries to ensure
that the transformation was correct.

By taking advantage of rtlv/shiva’s performance hints, verifi-
cation of output determinism for MicroTitan finishes in under 100
minutes on a machine with an Intel Core i7-5930K. The verification
code is single-threaded.

4.2 Bugs found
The verification process helped us find and fix four violations of
output determinism in MicroTitan across all its clock domains:

(1) The possibility of leaking data that was previously sent via
SPI prior to reset.

(2) The possibility of leaking data that was previously received
via SPI prior to reset.

(3) The possibility of leaking memory that was stored in the
USB transmit/receive buffer prior to reset (it is unclear if this
issue is exploitable, but we patched it anyways to simplify
verification).

(4) The possibility of leaking data about the reset line’s previous
values.

This demonstrates that rtlv can successfully be used for bug-
finding. In addition, this work resulted in an upstream contribution
to OpenTitan [10].

Overall, this case study shows that rtlv can be used to write
performant verification code for complex circuits and successfully
catch violations of a sophisticated security property. More informa-
tion about this case study can be found in [11], and the verification
code can be found at https://github.com/nmoroze/kronos.

5 RELATEDWORK
Much prior work has been done on hardware formal verification
tools, and a lot of this work uses similar ideas to the ones used
in rtlv. However, none of this prior work has fully tackled the
problem of performantly verifying software execution on hardware,

https://github.com/nmoroze/kronos
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which requires reasoning about many cycles of execution, using a
push-button approach.

5.1 End-to-end software/hardware verification
There is a long line of work in the end-to-end verification of sys-
tems, beginning in 1989 with the CLI Stack [3]. Other notable works
include Verisoft [1] and the CakeML project’s end-to-end verified
system [9]. These works prove deep end-to-end correctness theo-
rems (i.e. full functional correctness) about software running on
hardware, but they rely on heavyweight techniques using interac-
tive theorem provers. In contrast, rtlv proves simpler properties,
but in a push-button style.

5.2 SymbiYosys
SymbiYosys [14] is a popular open-source hardware verification
tool that can verify safety and liveness properties, but it has several
limitations. Like many commercial tools, SymbiYosys verifies prop-
erties written using SystemVerilog Assertions, making it difficult
to express complex properties.

SymbiYosys supports many solver backends, each with their own
capabilities and trade-offs. Several of the backends, including the
built-in Yosys-SMTBMC, verify properties using bounded model
checking (BMC) [4], which involves unrolling a bounded number
of circuit steps into one large SMT query. This query is then passed
into an SMT solver such as Z3 to determine satisfiability.

Like rtlv, SymbiYosys uses the Yosys synthesis tool. However, as
discussed in Section 3, SymbiYosys encodes execution directly into
the solver query, making it less effective for reasoning about many
cycles of execution than our Rosette-based symbolic execution
approach.

5.3 Symbolic execution for finding exploits
Zhang and Sturton [19] describes a system for finding exploits of
security vulnerabilities in hardware. Their system generates input
traces that will take a processor from its reset state to an error state
that violates a developer-defined security property. It recursively
searches from a given error state backwards to reset, generating
the input trace in reverse.

Like rtlv, this tool is based on symbolic execution. However,
a downside of traditional symbolic execution is that it results in
path explosion, since it involves forking execution at every possible
branching point. In order to narrow the search space, Zhang and
Sturton employ application-specific heuristics to help the search
converge on the reset state. This works in this case, but Rosette’s
symbolic execution uses “type-driven statemerging” to prevent path
explosion in general [15], making it useful for efficiently verifying
a wide range of properties. In addition, this work is limited to bug-
hunting for violations of safety properties, and cannot be used to
prove that properties hold.

5.4 Self-equivalence with don’t-cares
Lee and Sakallah [7] presents a hardware verification framework
called Averroes. As a case study, this work verifies a property called
“self-equivalence with don’t-cares” (or “SEQX”) for a Cortex M0+
processor. SEQX is equivalent to output determinism as defined
in Section 4, showing that Averroes can be used to verify such a
property. However, our case study’s target, the MicroTitan SoC,
is more complex than the Cortex M0+ CPU, which contains only

41 bits of un-reset state. Proving the property in our case requires
modeling execution of state-clearing boot code, while their work
did not address code execution. Therefore, their framework is in-
sufficient for systems such as MicroTitan that cannot satisfy output
determinism or SEQX without boot code.

Goel and Sakallah [6] presents another formal verification frame-
work called AVR, which is descended from prior work on Averroes.
However, Averroes shares AVR’s limitation of not supporting the
modeling of code execution.

6 LIMITATIONS
rtlv is an effective approach for verifying hardware, but it has
several limitations. rtlv has no way to bridge results proven with
Rosette to verification tools like Coq for end-to-end proofs that
require proving metatheory. For example, the case study described
in Section 4 proves a property about an individual clock domain in
MicroTitan, and while we have verified MicroTitan’s other clock
domains, we do not have a machine-checked, end-to-end proof that
these individual properties imply a top-level output determinism
property. Although we show this was adequate for catching viola-
tions, we cannot claim that the property was fully machine-verified.

There are also restrictions on the types of circuits that can be
verified using rtlv. The first restriction is that the circuit may not
contain combinational latches. We find this is not limiting for verify-
ing designs that target FPGAs, since latches are generally considered
bad practice in such designs and are therefore avoided [12]. In addi-
tion, rtlv does not support asynchronous resets or clocks that are
derived from logic in Verilog—these features can either be removed
or transformed into equivalent representations, or the circuit can be
preprocessed using the Yosys clk2fflogic pass (which makes the
circuit’s Rosette model, and hence the resulting verification code,
more complex).

A final limitation is that while rtlv can be used to verify prop-
erties by modeling software execution on hardware, this is lim-
ited to simple embedded applications. We expect rtlv can verify
properties that require executing several hundred lines of C on
microcontroller-level hardware, but we do not expect that the cur-
rent design can verify code running on a full operating system with
complex hardware.

7 CONCLUSION
This paper describes an approach called rtlv for reasoning about
hardware using the Rosette solver-aided programming language.
Our design choices and Rosette’s capabilities lend rtlv the ability
to performantly verify properties that require executing software
on hardware for many cycles.

In addition, rtlv’s approach encourages the development of
reusable circuit-agnostic property checkers that implement per-
formance hints, which are critical for scaling verification to more
complicated systems. Existing tools such as SymbiYosys do not
allow for the use of this technique, since they do not provide direct
access to the underlying SMT solver.

rtlv’s symbolic execution-based verification and performance
hints enabled us to verify that a large hardware system, MicroTitan,
satisfies a sophisticated security property, output determinism. This
verification case study successfully found bugs, and demonstrates
that rtlv is an effective approach for verifying such properties.
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