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Abstract
Yodel is the first system for voice calls that hides metadata
(e.g., who is communicating with whom) from a powerful ad-
versary that controls the network and compromises servers.
Voice calls require sub-second message latency, but low la-
tency has been difficult to achieve in prior work where pro-
cessing each message requires an expensive public key oper-
ation at each hop in the network. Yodel avoids this expense
with the idea of self-healing circuits, reusable paths through
a mix network that use only fast symmetric cryptography.
Once created, these circuits are resilient to passive and active
attacks from global adversaries. Creating and connecting to
these circuits without leaking metadata is another challenge
that Yodel addresses with the idea of guarded circuit exchange,
where each user creates a backup circuit in case an attacker
tampers with their traffic. We evaluate Yodel across the in-
ternet and it achieves acceptable voice quality with 990ms
of latency for 5 million simulated users.

1 Introduction
Telecom providers retain call records which include the par-
ticipants and duration of every call. This metadata is highly
sensitive for most users [19] and is especially problematic for
journalists who need to keep their sources confidential [10].
As a result, call records are targeted in large-scale attacks [22]
and collected by intelligence agencies; the NSA collected 434
million call records of Americans in 2018 [23]. Even if tele-
coms stop retaining call records, an attacker can monitor the
network to learn about voice calls happening in real-time.
Achieving high performance while protecting communi-

cation metadata is challenging against an adversary that can
compromise servers and tamperwith network traffic. In order
to hide communication patterns, messages between all users
must be processed in a synchronous batch, so as to give the
adversary the appearance that any pair of usersmight be com-
municating. This processing either requires CPU-intensive
cryptographic primitives such as PIR [3], which are trust-
less, or the use of semi-trusted servers whose job is to mix
the messages without revealing the mixing to the adver-
sary. However, if an adversary can compromise some of the
servers, messages must be routed through enough servers
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to ensure the adversary does not control every one of them,
which increases latency.

Prior systems like Herd [18] and Tor [7] can support voice
calls, but make strong assumptions that certain servers are
not compromised or that the adversary is not monitoring
the entire network. Systems that provide stronger guaran-
tees suffer from high latency [3, 14, 16, 26, 30]. For example,
Karaoke [16] routes messages through 14 servers to ensure
messages are mixed despite many servers being compro-
mised. At each hop, each server performs a public-key opera-
tion for every incoming message, which results in 8 seconds
of latency for 4 million users with 0.24 kbit/s of throughput
for each user. Karaoke is the fastest of these systems, but its
performance an order of magnitude away from the latency
and bandwidth requirements of voice calls.
This paper presents Yodel, the first metadata-hiding sys-

tem for voice communication that defends against an adver-
sary that compromises the entire network and compromises
many servers. Yodel hides metadata by operating a set of
servers that form a mixnet to shuffle user messages. To ad-
dress the costly public-key cryptographic operations that
are typically required in a mixnet, Yodel uses symmetric-key
circuits through the mixnet to relay messages between two
users. Users set up circuits using public-key cryptography,
but individual messages sent over circuits benefit from low-
cost symmetric-key cryptography, enabling Yodel to achieve
high performance.
Although circuits offer high performance, using them se-

curely required Yodel to address two technical challenges.
The first challenge lies in the fact that circuits are used for
multiple messages. Since servers maintain shared keys with
each user for the duration of a circuit, a server may be able
to learn information about a user over time. For example,
if a user is briefly disconnected from the network, a server
might observe that no message arrived on a particular circuit,
and infer that the circuit belongs to that user. Yodel’s key
insight is the idea of self-healing circuits, which rely on hon-
est servers to ensure that circuit traffic is maintained despite
network interruptions, such as a user’s network going offline,
or an active attack on any part of the network.
The second challenge lies in generating cover traffic, so

that each user’s traffic pattern is always the same, regardless
of whether they are in a conversation or not. Suppose Alice
wants to call Bob, so she sets up a circuit through the Yodel
mixnet. She tells Bob to connect to a specific Yodel server
and request messages for a specific circuit endpoint, and
Bob does the same for Alice. This allows Bob to receive
Alice’s messages (and vice-versa), while the mixnet hides
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who is sending those messages. If Alice is not talking to
anyone, she must still appear to perform the same steps, so
as to prevent the adversary from determining if she’s in a
conversation or not. That means setting up a circuit, as if she
is sending messages to someone, and requesting messages
from some circuit endpoint, as if she is receiving messages
from someone.
Yodel relies on an external metadata-private messaging

system for users to establish calls (by telling each other about
their circuits). Suppose that Alice tries to call Bob but doesn’t
hear back from him because the attacker tampered with the
externalmessaging system. In order to not reveal whether she
is communicating or not, Alice must request messages from
some circuit endpoint as part of her cover traffic. She doesn’t
know the ID of Bob’s circuit endpoint (or whether Bob is
even online). But requesting messages from her own circuit
endpoint is problematic, because Bob might have actually
received Alice’s call, and is also requesting messages from
the same circuit endpoint on the same server. If that were
to happen, an adversary with access to that server would
conclude that Alice and Bob were trying to talk.
Yodel addresses this challenge using guarded circuit ex-

change, a simple protocol that ensures users always have
a circuit they can safely connect to. The insight is to have
each user establish two circuits: one as a fallback for cover
traffic, and another as a circuit for talking with a buddy. In
case of any message loss during dialing, each user can safely
connect to either their cover traffic circuit or the buddy’s
circuit, without leaking any metadata to the adversary.

We implemented a prototype of Yodel in Go and ran it on
100 servers across Europe and North America to evaluate
its performance. Our experimental results show that Yodel
provides voice communication with 990ms of latency from
the time a user sends a message to the time their buddy
receives it, while supporting 5 million simulated users. The
990ms latency is close to the underlying network latency
of sending the messages in synchronous batches across 15
hops, with a one-way delay of 45ms between servers at each
hop. Our security analysis shows that the probability that
an adversary learns any metadata from Yodel is negligible
when messages are sent over 15 hops, under the assumption
that servers are honest with 80% probability.
Yodel’s latency is above the ITU G.114 recommendation

for voice calls (at most 400ms) [11], and our prototype uses a
low-bitrate vocoder [27], but we find that it provides accept-
able voice quality. As anecdotal evidence that the quality is
acceptable, we have communicated over Yodel several times
in the course of preparing this paper.
Our contributions are the following:
• The design and implementation of Yodel, a low-latency
metadata-private communication system that can sup-
port voice calls.
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Figure 1. Overview of Yodel’s components. Alice and Bob have
created two circuits each. The faded arrows are backup circuits,
created as part of Yodel’s guarded circuit exchange. Alice and Bob
are in a voice call, so they are connecting to each other’s circuits,
but the adversary doesn’t know who created which circuit.

• The self-healing circuits and guarded circuit exchange
mechanisms, which allow for efficient private communi-
cation through a mixnet.

• An analysis of Yodel’s design and an experimental evalu-
ation of its performance.

2 Overview
Figure 1 shows how users communicate through Yodel at a
high level. Users send messages directly to a Yodel server
which participates in a mix network with the other servers.
The users choose a random sequence of servers to process
each of their messages and onion encrypt their messages
to ensure that messages follow their chosen paths. An es-
tablished path through the network is called a circuit, and
messages (e.g., voice packets) flow from users through cir-
cuits to their endpoints. Users receivemessages by connecting
to a circuit endpoint (i.e., connecting to a Yodel server and
requesting messages for that endpoint ID). The endpoint ID
is pseudorandom and reveals nothing about the sender.
Yodel’s servers, labeled 1 through N in Figure 1, shuffle

messages to hide which user is sending to which circuit end-
point. The servers shuffle messages in layers, indicated by
the vertical groups, similar to a parallel mixnet [13, 16]. All
paths in Yodel have the same number of layers, which is a
system security parameter. At each layer, a server receives
messages from all of the servers in the previous layer, de-
crypts the messages (which are onion-encrypted), shuffles
them, and sends the messages to the servers on the next layer.
To simplify Figure 1, the server-to-server communication is
only shown for the next-to-last layer.

Yodel assumes that users know the servers’ long-term pub-
lic keys and that communicating users have established a
shared secret out-of-band (e.g., using a metadata-private dial-
ing system such as Alpenhorn [15]). Users use the shared se-
cret to authenticate the circuit endpoint, which they commu-
nicate to their buddy through an external messaging system,
and to encrypt their voice packets end-to-end. In Figure 1,
Alice and Bob are in a voice call and have established two



circuits through Yodel, but each of them only connects to one
circuit. Alice is sending messages to the circuit endpoint that
Bob is connected to, and vice-versa. The adversary sees that
Alice and Bob connect to the system, and knows to which
circuit endpoints they are connected to. However, the mixnet
hides which users are sending to which circuit endpoint, so
the adversary cannot tell whether Bob is connected to Alice’s
circuit.
Communication through Yodel is divided into synchro-

nous rounds and subrounds. In every round, each user es-
tablishes two new circuits, and each user also connects to
some circuit endpoint. The two circuits are used for guarded
circuit exchange: the user can send one to a conversation
partner (if the user calls a buddy), and use the other one as
a fallback for cover traffic (if they don’t hear back from the
buddy, or if they are not talking to anybody).
Each round has a fixed number of subrounds, with each

circuit sending exactly one message per subround. Messages
are encrypted with the keys of each hop in a circuit, in order,
so that the message can be decrypted only if it correctly tra-
verses the entire circuit. At every layer, each server collects
all messages routed through it from the servers at the pre-
vious layer, decrypts each message with its corresponding
circuit key, and sends them to their next hop, based on the
pre-established circuit paths. Messages are always sent in
batches, and the order of messages in a batch is determined at
circuit setup time. This ensures message order cannot reveal
any additional metadata during a subround.
If a server does not receive an incoming message on a

circuit, it fills in random data in its place, and sends the
random data to the next hop in the circuit. The random mes-
sage is indistinguishable from a real message on the circuit,
since messages are onion-encrypted at each hop. By filling
in random messages in place of any missing messages, hon-
est servers implement Yodel’s self-healing circuits, ensuring
that an adversary cannot trace the path of a circuit across
an honest server by dropping or modifying messages. Yodel
chooses circuit paths to be long enough to ensure an honest
server is present on each path.

Although each user establishes two circuits, the user sends
on just one of these circuits (the non-backup circuit); mes-
sages on the backup circuit are filled in with random bytes
by honest servers, as if the messages were dropped. The two
circuits are indistinguishable to the adversary, so sending
messages on just one of them does not reveal any additional
information. Similarly, only half of the circuit endpoints are
connected to; for circuit endpoints with no connections, Yo-
del servers simply discard the messages.

2.1 Goals and threat model
Yodel has three goals: metadata privacy, high performance,
and availability. Yodel provides privacy in two important di-
mensions. First, regardless of how many users are connected
to the system, Yodel prevents an adversary from determining

whether any pair of users are communicating or not, even if
every other user is an adversarial Sybil. Second, by support-
ing a large number of users, Yodel makes it less suspicious
for users to connect to Yodel in the first place [7]; otherwise,
the mere use of Yodel may reveal critical metadata [8]. Yodel
also tolerates some servers going down, as well as network
outages, so that an attacker cannot easily take down the
system with a denial-of-service attack.

Threat model. We design Yodel to resist attacks by a global
adversary who has full control over the network and can
tamper with messages traveling over any network link. Fur-
thermore, we assume that the adversary controls some num-
ber of servers. To give an intuition for a possible parameter,
studies on Tor suggest that less than 20% of the servers are
malicious [21, 25, 31]. For most of this paper, we assume that
each Yodel server has a 20% chance of being controlled by the
adversary; however, this is just a parameter for Yodel, which
influences the number of hops that messages must traverse.
Finally, Yodel’s design assumes that standard cryptographic
constructs (e.g., private and public key cryptography and
hash functions) are secure.

Security goal. Yodel’s security goal is that the probability
of an adversary learning any metadata about voice calls is
negligible.1 Specifically, we aim for the probability of an ad-
versary learning anything to be 10−8 per round. We consider
this to be a good security goal because we expect rounds to
start every few minutes (so that a user need not wait more
than a few minutes until they can establish a voice call in the
next round). For example, starting a round every 5 minutes
means it would take around 1000 years for the adversary
to get lucky and learn a user’s metadata for a single round.
The reason our privacy guarantee is not stated in typical
cryptographic strengths like “128 bits of security” is that it
is primarily bounded by the number of rounds that an ad-
versary can attack, rather than the computational resources
available to the adversary.
Yodel does not hide which users are connected to the

system. Instead, we aim to support many users so that it isn’t
suspicious for users to connect in the first place.

Performance goal. Yodel’s performance goal is to support
voice calls for many users. We aim to provide under one sec-
ond of one-way latency for voice packets. Yodel also needs
sufficient throughput to transmit audio between users, which
is determined by the audio codec. Yodel targets the LPCNet
vocoder [27], which is specialized for low-bandwidth speech
transmission, and requires 1.6 kbit/s per user. We also evalu-
ate Yodel with the standard Opus audio codec at 8 kbit/s per
user. Finally, Yodel aims to support many users (e.g., millions
running on 100 servers), and can scale to support more users
by adding more servers.

1The probability is exponentially decreasing in the number of mixnet layers.



Envisioned deployment. To prevent an adversary from com-
promising a significant fraction of the servers, we envision
that many organizations take part in running Yodel servers,
across different administrative domains and government ju-
risdictions. Yodel’s latency is dominated by the maximum
latency between two servers in the system (because at each
hop, servers wait to receive messages from all other servers).
Thus, servers should be relatively close to minimize this la-
tency. Our evaluation (§6) uses servers on the east coast of
the United States and distributed across countries in Europe,
with a maximum one-way latency of 45ms between servers.
In this setup, the lower bound on Yodel’s one-way latency, as-
suming circuits are 15 hops long, is 45ms×15 hops = 675ms.
Another possibility with more political diversity but similar
proximity is to deploy servers in Europe, Israel, and Russia.

We envision that the policy for adding servers to Yodel is
stricter than Tor, which allows any server to automatically
join the network. In Yodel, all servers participate in all layers
of the mixnet, so adding a new server immediately impacts
the performance of all users in the system (for better or
worse). One possible policy for Yodel is to require new servers
to be manually approved by an independent organization.

Availability. Yodel is resilient to some servers being down
at the start of a round (up to 2%), and to temporary large-
scale server or network outages that occur during a round.
No matter how many servers are down, Yodel maintains its
privacy guarantee. However, users who established circuits
through a failing server will not be able to communicate
messages to their partners. The external messaging system
that Yodel uses to exchange circuit information should also be
resilient to faults to ensure the availability of communication
end-to-end.

3 Design
Calls through Yodel operate in rounds, which are kicked off
by one of Yodel’s servers that acts as a coordinator and noti-
fies the other servers about the new round. Clients connect
to one of the Yodel servers to receive notifications about
new rounds; this server is known as the client’s entry server.
Round numbers must increase with every announcement
so that the coordinator cannot announce the same round
multiple times. The coordinator is untrusted, and if the co-
ordinator goes down the servers can elect a new server to
act as coordinator (in practice, the online server with the
smallest long-term public key is the coordinator by fiat).

We explain Yodel’s design using pseudocode for the Yodel
client, shown in Figure 2. Every time the servers announce a
new round, the client_round function in Figure 2 is called
with the new round number, the public keys of the Yodel
servers, and the user’s call buddy. Specifically, the onion_keys
parameter is an array with a unique public key for each of

def client_round(round, onion_keys, buddy):
### Phase 1: Circuit Setup
onion1, circuit1 = rand_circuit(round, onion_keys)
onion2, circuit2 = rand_circuit(round, onion_keys)

receipts = send_setup_onions([onion1, onion2])
h1 = onion_decrypt_aes(circuit1.keys, receipts[0])
h2 = onion_decrypt_aes(circuit2.keys, receipts[1])
if h1 != hash(circuit1.endpoint) or

h2 != hash(circuit2.endpoint):
raise Exception("hash mismatch; aborting round")

### Phase 2: Noise Verification
counts, sigs = recv_noise_signatures()
noise = 0
for i in range(servers):

if verify(sigs[i], servers[i].signing_key):
noise += counts[i]

if noise < required_noise:
raise Exception("insufficient noise present")

### Phase 3: Circuit Exchange
buddy_endpoint = exchange_circuit(buddy, circuit1.endpoint)
if buddy_endpoint is None:

buddy = self
buddy_endpoint = circuit2.endpoint

conn = connect_circuit(buddy_endpoint)

### Phase 4: Circuit Messaging
def read_loop():

while data := conn.read():
# Note: don't need to onion_decrypt_aes here.
msg = decrypt_aes(buddy.secret, data)
play_voice_packet(msg)

spawn_thread(read_loop)

while r := recv_subround_announcement():
msg = encrypt_aes(buddy.secret, get_voice_packet())
onion = onion_encrypt_aes(circuit1.keys, msg)
send_voice_onion(r.subround, onion)

Figure 2. Pseudocode for the Yodel client. Several details
(e.g., MACs, nonces, and key rotation) are omitted for clarity.

Yodel’s N servers, freshly generated for the round.2 The
buddy parameter is an object that contains information about
the user’s call partner, including a shared secret that they
established out-of-band. If the user doesn’t have a call partner
for some round, then the self object is used for the buddy
parameter (so idle users effectively chat with themselves).
Every round is divided into four phases, as indicated in

Figure 2. Phases 1–3 enable clients to build and connect to
circuits securely. Then clients spend most of the round in
phase 4, exchanging voice packets with their call buddy. In
the following sections, we explain each of these phases in
detail, both from the client’s perspective and the server’s
perspective.

2The newly generated keys are signed by the servers’ long-term signing
keys, but we omit the signing and verification steps from the pseudocode.



def rand_circuit(round, onion_keys):
endpoint = rand.bytes(32)
path = [rand.choice(onion_keys) for i in range(nlayers)]
onion, aes_keys = onion_encrypt(path, endpoint)
return onion, Circuit(aes_keys, endpoint)

def onion_encrypt(path_public_keys, msg):
keys = []
onion = msg
for srv in reversed(path_public_keys):

pub, priv = generate_key_pair()
shared_key = diffie_hellman(priv, srv.public_key)
ctxt = encrypt_aes(shared_key, srv.next_hop_idx + onion)
# Note: ciphertext expansion due to public key and MAC.
onion = pub + ctxt + MAC(shared_key, ctxt)
keys = [shared_key] + keys

return onion, keys

def onion_encrypt_aes(path_aes_keys, msg):
onion = msg
for key in reversed(path_aes_keys):
# Note: no ciphertext expansion!
onion = encrypt_aes(key, onion)

Figure 3. Pseudocode for creating circuits and onions; used
by clients and servers. We use AES in the pseudocode for
concreteness, but Yodel is not tied to a particular cipher.

3.1 Circuit setup
During every circuit setup phase (phase 1 in Figure 2), clients
create two circuits through Yodel’s mix network. The client
uses one circuit for sending messages to the user’s call buddy,
and the other as a fallback in case the circuit exchange step
fails (as we explain later).
Clients create circuits by sending onion-encrypted mes-

sages to the mixnet. To set up a circuit, the client calls the
rand_circuit function in Figure 3 which selects a random
256-bit identifier for the circuit endpoint, and then selects
one of Yodel’s servers at random for every layer through
the mixnet. The client then creates a circuit setup onion that
consists of the endpoint ID, repeatedly encrypted using the
public key of each randomly selected hop in the circuit.
The onion_encrypt function (Figure 3) creates the circuit

setup onion by adding layers of encryption in reverse order
of the circuit’s path, starting with the endpoint ID. At each
layer, the client generates an ephemeral key pair which is
used to derive a shared key using Diffie-Hellman. The onion
is encrypted with the shared key along with an index that
identifies onion’s next hop. Finally, the ephemeral public key
is appended to the onion so that the server can derive the
same shared key and decrypt one layer of the onion. The
onion_encrypt function also returns the shared keys used
to encrypt the onion, as those will be used to encrypt voice
packets during the circuit messaging phase. The client then
sends the circuit setup onions through the mixnet (by the
calling send_setup_onions in Figure 2).

Server-side processing Figure 4 shows the pseudocode for
how a server handles circuit setup onions at a particular

def process_circuit_setup(round, layer, inputs):
inputs = dedup(inputs)
priv = srv.get_private_key(round)

for i in range(inputs):
keys[i] = diffie_hellman(priv, inputs[i].public_key)
msgs[i] = decrypt_aes(keys[i], inputs[i].msg)

if layer < nlayers-1:
shuffle = rand.permutation(len(msgs))
shuffle.apply(msgs)

hops = [msg.next_hop for msg in msgs]
srv.circuit_state[(round,layer)] = (keys, shuffle, hops)

replies = distribute_setup_onions(layer+1, msgs, hops)
shuffle.invert(replies)

else: # Last layer in the mixnet:
endpoints = msgs
srv.circuit_state[(round,layer)] = (keys, endpoints)
replies = [hash(endpoint) for endpoint in endpoints]

for i in range(replies):
replies[i] = encrypt_aes(keys[i], replies[i])

# Replies are sent to previous layer, or users.
return replies

Figure 4. Server pseudocode for circuit setup. The noise
generation and verification steps (§3.2) happen before and
after this code runs, and are not shown here.

layer. Each server receives as inputs the messages routed
through it from the servers on the previous layer (the servers
on the first layer collect messages from users). The servers
discard duplicate messages, which is essential for security.
If an attacker manages to duplicate a user’s circuit setup
onion, it will result in two circuits with the same endpoint—a
pattern that links the user to their circuit’s endpoint. Since
Yodel’s onion encryption scheme during circuit setup is non-
malleable, removing duplicates is just a matter of dropping
identical messages.
For each input message, the server peels one layer of

onion encryption by computing the shared key using Diffie-
Hellman (with its private key and the onion’s public key) and
using it to decrypt the message. If the server is processing a
non-final layer, it mixes the decrypted messages by generat-
ing a random permutation and then shuffling the messages
according to that permutation. This step is what prevents the
adversary from connecting senders to receivers, assuming
the permutation stays hidden.
The servers implement persistent circuits by storing the

symmetric key and next hop of each onion and the shuffle
permutation for each layer in the circuit_state map. When
messages are sent through circuits (in subrounds), the server
decrypts each input using its corresponding symmetric key
(i.e., inputs[i] is decrypted with keys[i]), applies the saved
permutation, and sends each message to the next hop on its
circuit. By using the same permutation, servers can identify



messages belonging to the same circuit across subrounds,
and use the corresponding symmetric keys to decrypt them.
Continuing with the code in Figure 4, the server relays

messages to their next hop on the next layer by calling
distribute_setup_onions. This call blocks until the next layer
returns a reply message for each onion. On the last layer,
servers decrypt the circuit setup onions to learn the random
256-bit circuit endpoints corresponding to the circuits. The
servers save the endpoints so that users can later connect
to the corresponding circuits and receive messages. The last
layer replies to each circuit setup onion with a cryptographic
hash of its endpoint, called a receipt, which enables users to
verify that their circuits were created correctly.

The replies flow through the mixnet in reverse, back to-
wards the users. Each server on the reverse path waits for
the replies from the following layer, then applies the inverse
of the permutation it used for shuffling messages on the
forward path. To prevent an adversary from correlating mes-
sages on the reverse path, the server encrypts the replies
with the shared keys from the forward path. Eventually, a
symmetrically encrypted onion message carrying the hash
of the circuit endpoint reaches the client. The client decrypts
the onion, and checks that the circuit was set up correctly
by comparing the hash of the endpoint ID it had selected
against the hash specified in the returned message (as shown
at the end of phase 1 in Figure 2). If the hashes match, then
the client is guaranteed that the circuit setup onion traversed
all of the servers on its chosen path. A client that fails to
establish two circuits will not proceed with the round. This
completes the circuit setup phase.

3.2 Noise generation
Yodel’s privacy guarantee relies on unlinking the user who
creates a circuit from the circuit’s endpoint. In §4 we show
that by shuffling messages at honest mix servers, Yodel pre-
vents (with overwhelming probability) an attacker from learn-
ing whether Alice is connecting to Bob’s circuit or her own
(i.e., whether Alice is chatting with Bob or she is idle).

In Yodel’s topology, users create circuits that take indepen-
dent routes through the mixnet. This approach distributes
the load over all available servers, which allows Yodel to
reach its performance goal but also introduces risk. If two
users, Alice and Bob, set up non-intersecting circuits, then
an attacker that discards circuit setup messages from all
other users could trace Alice’s circuit to its endpoint and
detect whether Bob is connecting to it. The more servers
Yodel has, the higher the chance that Alice and Bob pick non-
intersecting paths for their circuits. Yodel addresses this issue
by having its servers create noise circuits (similar to noise
messages in Karaoke [16]) during the circuit setup phase
and ensuring that these circuits are established before users
begin connecting to each other’s circuits. The noise circuits
ensure that every user’s circuit intersects with some circuits
whose routes the attacker does not know. Much like regular

clients, servers select random paths through the mixnet for
their noise circuits and verify that the circuits were estab-
lished by checking their receipts (as described in §3.1). Our
analysis computes the number of noise circuits that every
server needs to create to ensure Yodel’s security goals (§4).

3.3 Noise verification
One challenge in relying on noise circuits is that an attacker
might drop the circuit setup messages to eliminate the noise
in the system. Yodel prevents this attack by having servers an-
nounce if their noise circuits have been successfully created,
before users attempt to connect to any circuits. Concretely,
after a server creates and verifies the receipts of its noise
circuits for a round, it broadcasts a noise signature to all other
servers indicating how much of its noise is present for the
round. Each user’s entry server aggregates these signatures3
and forwards them to the user’s client.
The client verifies that servers generated enough noise

before proceeding with the round. First, it receives the noise
signatures from its entry server and the number of noise
circuits that each server vouched for, as shown in phase 2 of
Figure 2. The number of noise messages that a server vouches
for is dynamic to handle faulty servers, as we describe next.
The client determines how much total noise is present in the
round by adding together the per-server noise counts that
have valid signatures. If the total noise is over the threshold
for privacy, which is a system parameter (required_noise in
the code), the client continues to the next phase of the round,
otherwise it aborts the round.

Handling faulty servers. When servers are down, there
might not be enough noise for clients to proceed with the
round. Yodel deals with this by having online servers gen-
erate extra noise when servers go down. One limitation of
Yodel (discussed further in §7) is that a high percentage of
messages get lost once a few servers go down, due to requir-
ing messages to traverse many hops. For example, if 2% of
the servers go down, 20 hops results in up to 2% × 20 = 40%
message loss. However, if each server generates 1.7× more
noise when 2% of the servers go down, then noise verification
can still succeed. In this case, verification succeeds if each
server receives 60% (budgeting for 40% loss) of the receipts
for their noise circuits (since 0.6 × 1.7 > 1).

3.4 Guarded circuit exchange
After clients establish circuits and verify that servers have
generated sufficient noise for the round, they need to choose
a circuit endpoint to connect to for the remainder of the
round. To start a voice call, clients exchange circuit endpoints
through an external metadata-private messaging system by
calling exchange_circuit in phase 3 of Figure 2. In the case
that Alice is calling Bob, she sends Bob the endpoint ID of
one of her circuits (circuit1) through the external messaging
3An aggregatable signature scheme like BLS [5] could save bandwidth.



system. If the exchange succeeds, then the function returns
Bob’s response (an endpoint that he created). However, the
adversary can block messages over the external system.

Yodel’s adversary model allows the attacker to discard any
message sent on the network. Therefore, the attacker can
discard Alice’s message and prevent her from notifying Bob
about her circuit’s endpoint. If a client does not receive a cir-
cuit endpoint from their buddy (i.e., buddy_endpoint is None
in phase 3 of Figure 2), then the client connects to the backup
circuit it had established (circuit2). Users never share the
endpoint of their backup circuit with anyone, ensuring no
other user will connect to that circuit.
This backup circuit is crucial since Alice can never know

whether Bob received her circuit endpoint and vice-versa—
this is the Two Generals problem [2, 9]. However, Alice needs
to connect to some circuit to ensure her traffic patterns are
the same in every round. Since she can never be sure about
the state of circuit1, she connects to circuit2 if she does not
receive a circuit endpoint from Bob. If Alice is idle (i.e., not
calling anyone), then her client still invokes the external
messaging service with a message to herself as a form of
cover traffic.

After choosing which circuit to connect to, the client calls
connect_circuit to start receiving messages from that cir-
cuit. The circuit endpoints contain information about which
server on the last layer is hosting that circuit, so that the
client knows which server to connect to.
Yodel’s end-to-end guarantees are only as strong as the

guarantees offered by the external system used to exchange
circuits. The external system needs to have strong security
properties, but also needs good enough performance so that
users can establish calls quickly. For example, Pung [3] offer
strong security, but it could take several minutes to establish a
call. Alternatively, Karaoke [16] provides a weaker guarantee,
but its lower message latency (e.g., 8 seconds for 4 million
users) would allow users to establish calls more quickly.

3.5 Circuit messaging and self-healing circuits
Once clients have set up circuits and exchanged their end-
points, users can start exchanging messages. Yodel divides
every round into a fixed number of subrounds (e.g., 1,000),
which the coordinator kicks off at fixed intervals and entry
servers announce to their clients.
The client pseudocode for circuit messaging is shown in

phase 4 of Figure 2. In every subround, the client sends a fixed-
size message to their non-backup circuit (circuit1), intended
for the user’s call buddy. The content of the message (e.g., a
voice packet) is encrypted end-to-end with a key known
only to the user and their call buddy. The encrypted content
is then onion-encrypted using the symmetric keys on the
circuit’s path, which the sender established during circuit
setup. The client sends the onion to the first hop on its circuit
by calling send_voice_onion.

def process_subround(round, layer, subround, inputs):
st = srv.circuit_state[(round,layer)]
for i in range(inputs):

if inputs[i] == None:
# Heal the missing input.
outputs[i] = rand.bytes(subround_msg_size)

else:
outputs[i] = decrypt_aes(st.keys[i], inputs[i])

if layer < nlayers-1:
st.shuffle.apply(outputs)
# No replies since circuits are unidirectional.
distribute_voice_onions(layer+1, outputs, st.hops)

else:
# Last layer delivers messages to users.
for i in range(st.endpoints):

if u := connected_user(st.endpoints[i]):
send_msg(u, outputs[i])

Figure 5. Server pseudocode for circuit messaging.

In a separate thread, the client receives one message every
subround from their buddy’s circuit endpoint. The message
is decrypted with the buddy’s shared secret and the resulting
audio data is sent to the user’s speaker. The end-to-end en-
cryption between users can optionally include authentication.
However, it is crucial that the user not react to authentica-
tion failures (e.g., by going offline), as this would undermine
Yodel’s self-healing, which we describe next.

Server-side processing. Figure 5 shows the pseudocode for
processing a subround on a particular layer. On every layer,
the server receives as input the messages from the previous
layer in batches. The input message to each circuit is deter-
mined by the position of the message in the batch. If the
input to a circuit is present, the server removes a layer of en-
cryption from the message using the circuit’s key, which was
established during the circuit setup phase. If some circuit is
missing a message, the server heals the circuit by generating
a random message in its place, which defeats active attacks.
A critical challenge that Yodel handles is that the adver-

sary might drop messages in an attempt to correlate traffic
between subrounds. For example, if whenever the attacker
drops Alice’s message, Bob does not receive a message from
the endpoint he is connected to, then they must be talking.
Yodel addresses this challenge with the idea of self-healing
circuits, illustrated in Figure 6.

To ensure that missing messages do not create an observ-
able pattern, the server that detects the loss creates another
message in its place. The server replaces the missing mes-
sage with random bytes, as shown in Figure 5. Importantly,
during subrounds, messages are onion-encrypted with the
symmetric circuit keys, but the messages are not authenti-
cated (see the onion_encrypt_aes function in Figure 3), so
that a random string is indistinguishable from the original
message to everyone except for the sender and their buddy.

After decrypting the input messages and healing any miss-
ing inputs, the server applies the shuffle that was generated
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Figure 6. Self-healing. The dashed line denotes a message that the
attacker drops on the blue circuit. The honest server on the third
layer fills a message in its place, which ensures that the attacker
cannot distinguish red and blue messages after the third layer.

during circuit setup and sends the results to the next layer.
Using the same shuffle ensures the next layer will be able to
map input messages to the correct circuits, so that servers
apply the right circuit keys. A malicious server could shuf-
fle messages under a different permutation so that the next
server applies the wrong keys, but this would only cause
the user’s call buddy to fail in decrypting those messages
(and thus discard them). It does not benefit the attacker since
Yodel messages are not authenticated between hops, and any
message looks equally plausible.
The last layer hosts the circuit endpoints, and users con-

nect directly to a server to request messages for an endpoint.
If a circuit endpoint has no connected user, the server dis-
cards messages that arrive on that endpoint.

4 Analysis
Our privacy analysis follows the structure of the client pseu-
docode from Figure 2, where privacy means hiding the user’s
buddy. The first two phases, circuit setup and noise verifica-
tion, are independent of the user’s buddy, and thus leak no
information about who the user is communicating with. If
any errors arise at this point, the client will stop participating
in this round, and leak no further information about buddy.
The third phase involves the external messaging system for
circuit exchange, whose privacy is outside of the scope of our
analysis; we assume it provides sufficient guarantees. The
third phase also involves the client connecting to a specific
circuit endpoint. §4.1 argues that this leaks no information
about buddy, because the adversary cannot determine which
user established a given circuit endpoint.

Once users set up their circuits, the fourth phase involves
sending messages over these circuits. The attacker observes
the same communication pattern in every subround: users
send messages to the same servers, every inter-server link
carries the same number of messages, and users receive one
message from the same endpoint. (Yodel’s self-healing cir-
cuits ensures that the attacker observes the same pattern
even if the attacker discards messages.) Therefore, exchang-
ing many messages does not allow the attacker to learn any
more information about the conversation’s metadata than
just a single exchange, as in the circuit setup phase.
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Figure 7. Yodel’s privacy guarantee: an adversary cannot deter-
mine whether Alice’s message goes to circuit endpoint X and Bob’s
message to Y or vice-versa (i.e., scenarios 1 and 2 are equally likely
given the adversary’s observations). Lines represent links with ma-
licious intermediary servers that an adversary can track. Servers
sa , sb , sx , and sy are honest; n0 and n1 are noise messages.

We omit many of the details in this section; a companion
analysis [17] provides a more detailed treatment of Yodel’s
privacy guarantees.

4.1 Circuit indistinguishability
Yodel’s privacy stems from the adversary’s inability to corre-
late the start and end points of a user’s circuit. To make this
more precise, we introduce the notion of peering circuits, as
illustrated in Figure 7. Two circuits peer if both circuits route
through at least two honest servers, and the leftmost honest
server on each circuit’s path (sa or sb in Figure 7) is to the
left of the rightmost honest server on the other circuit’s path
(either sy or sx in Figure 7, respectively). Server s is “left” of
s ′ if s appears on the route in an earlier layer than s ′. With
sufficiently long routes, we can ensure that circuits peer with
high probability, as we analyze in §4.2.

Theorem 1. Conversation privacy. For any two peering
circuits created by honest clients, Alice and Bob, with end-
points x and y, the following holds:

| Pr[Alice → x ∧ Bob → y | O]

− Pr[Alice → y ∧ Bob → x | O] | ≤ η,

where user → x means that user created the circuit with
endpoint x , and O denotes the attacker’s observations from
all network links and compromised servers. The probability
is taken over the coin tosses in the selections of the circuits’
paths and the cryptographic primitives that Yodel uses. η is
a negligible function in the number of noise circuits and the
security parameters of Yodel’s cryptographic primitives.

Proof. Observe Figure 7. In this figure two users, Alice and
Bob, are sending messages through the mixnet. The messages
n0 and n1 are noise messages and happen to coincide with
the messages from Alice and Bob at the honest servers sa and
sb respectively. For simplicity, assume that the attacker has
discarded all other messages, so the attacker sees precisely
one message on every link. Server sa shuffles Alice’s message
withn0; after the server peels its layer of the onion encryption
and uncovers the next layer of the onions, the two messages



appear indistinguishable (by the cryptographic merits of the
encryption scheme). It is therefore equally likely (given the
attacker’s observations) that Alice’s message travels to sx
and n0 travels to sy or vice-versa. Similarly, Bob’s message is
equally likely to be at sx and n1 at sy or vice-versa.

Since no user connects to N0 or N1, the attacker can infer
that these endpoints belong to noise circuits, so Alice and
Bob must route their messages to endpoints X and Y . The
attacker cannot distinguish whether n0 arrives at endpoint
N0 and n1 arrives at N1 or vice versa, so there are two equally
likely cases, corresponding to the two scenarios in Figure 7.
Scenario 1: Alice’s message travels to sx and then to endpoint
X , and Bob’s message to sy and then to endpoint Y (and n0
reaches endpoint N1 and n1 reaches endpoint N0). Scenario
2: Alice’s message travels to Y , Bob’s message travels to X ,
and n0/n1 travel to N0/N1.
To complete the argument, we need to show that a noise

circuit that routes from sa to sx and another circuit routing
from sb to sy (or alternatively, routes from sa to sy and sb
to sx ) exist with overwhelming probability. The probability
that a noise circuit routes through two particular servers is
1
N 2 , where N is the number of servers in Yodel. Thus, the
probability that allm noise circuits do not route through these
servers is (1 − 1

N 2 )
m . Using the union bound we find that

the probability that there is not a pair of circuits where each
circuit route through the servers above is less than 2(1− 1

N 2 )
m ,

which (for a fixed N ) approaches to 0 asm increases. □

Informally, Theorem 1 means that the attacker cannot dis-
tinguish which of the two peering circuits was created by
Alice and which by Bob. This is important since the attacker
can see the endpoint that a user connects to (i.e., if last server
on the circuit’s path is corrupt). If an adversary could deter-
mine that Alice is connecting to Bob’s circuit endpoint, the
adversary would learn that they are communicating.
The companion analysis [17] shows how Theorem 1 can

be extended to any number of pairs of peering circuits to pro-
vide group privacy. The group privacy guarantee allows any
set of communicating users to claim they were idle and any
set of pairs of idle users to claim they were communicating,
which is stronger than the two-user guarantee of Theorem 1
and prior systems [16, 26, 30]. For example, if an adversary
wishes to learn whether any of an organization’s employ-
ees communicate with some journalists, then the two-user
guarantee is insufficient. In contrast, group privacy applies
to any set of pairs of peering circuits so it can protect any
group of users.

4.2 Security parameters
To achieve meaningful protections with Theorem 1 (and the
stronger group privacy guarantee), circuits must peer and
there must be sufficient noise in the system. This section
analyzes the parameters that enable Yodel to meet these
conditions with high probability.
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The probability that two circuits peer increases with the
number of hops in the circuits. Our companion analysis [17]
shows how to compute this probability, and Figure 8 gives the
results for various trust assumptions. The results show that
if servers are honest with 80% probability, then two circuits
with 15 hops peer with probability 1 − 10−8. Our analysis
also shows that Yodel’s path length is close to optimal for
its parallel mixnet topology (which is also used by prior
systems [13, 16, 24]).

To guarantee group privacy, servers must also create suffi-
cient noise circuits during the circuit setup phase. Figure 9
presents the number of noise circuits needed for different
deployment sizes and trust assumptions. We find that the
amount of noise that each server should generate grows
proportionally to the number of servers. This growth seems
unavoidable with Yodel’s topology, since all servers (together)
need to generate noise proportional to the number of inter-
server links (which is quadratic in the number of servers).

5 Implementation
The Yodel prototype is around 10,000 lines of Go code and is
distributed as part of Vuvuzela at https://github.com/vuvuzela.
It uses the NaCl box primitive [4] to onion encrypt circuit
setup messages and native AES instructions to onion encrypt
voice frames during circuit messaging. During circuit setup,
servers send each other batches of onions over TCP using the

https://github.com/vuvuzela


gRPC library. The circuit messaging phase switches to UDP
to send batches of AES-encrypted onions between servers.

We opt for UDP in circuit messaging because with TCP a
single packet drop anywhere in the network stalls the entire
subround,4 increasing latency for all users. This is problem-
atic for voice calls, where a moment of silence is preferable
to hundreds of milliseconds of extra lag. Self-healing circuits
ensure that dropped message do not impact security, which
enables us to use UDP to avoid retransmission delays.
During circuit messaging, after a server decrypts all the

onions in a layer, our Go code writes out the entire batch of
onions to the UDP socket at once using the sendmmsg system
call. This bursty behavior, combined with the synchronous
nature of subrounds, yields significant UDP packet loss with-
out rate limiting. Our implementation relies on the htb qdisc
in Linux for rate limiting. At deployment time, each Yodel
server creates an htb qdisc for every other server in the net-
work and the server’s total outgoing bandwidth is evenly
allocated among the qdiscs. For example, in a deployment
with 100 servers, a server with a 10Gbit/s link creates 100
qdiscs, each with a max rate of 100Mbit/s, and maps each
server connection to one of those qdiscs. This enables Yodel
to achieve a loss rate of less than 0.1% for all data points in
our experiments (§6).

Our implementation supports two audio codecs: LPCNet [27]
and Opus [28, 29]. The choice of codec impacts Yodel’s mes-
sage size and subround frequency, which are fixed at de-
ployment time. In LPCNet, an audio frame is 40ms and com-
presses to 8 bytes, so Yodel uses 64 bytes to encode 7 frames
every subround (the remaining 8 bytes are used for a keyed
checksum to detect loss in the presence of self-healing). With
this encoding, Yodel runs a subround every 280ms to achieve
continuous playback, resulting in 1.6 kbit/s of throughput
per user. In Opus, each audio frame is 60ms and compresses
to 60 bytes, so we fit 4 audio frames into a 256-byte mes-
sage every subround. In this mode, we run subrounds every
240ms, which results in 8 kbit/s of throughput per user.

6 Evaluation
We experimentally answer the following questions:
• Can Yodel achieve its latency and bandwidth targets to
support voice calls for a large number of users?

• Can Yodel scale to more users by adding more servers?
• How do trust assumptions impact Yodel’s performance?
• What are the major costs of running a Yodel server?
• Does Yodel provide acceptable voice quality?
We simulated a realistic deployment of Yodel by running

it over the internet with servers in different countries. The
Yodel servers ran on Amazon EC2, evenly distributed among

4A server must wait for the packet to be retransmitted before the kernel
gives it the rest of the messages in the batch so it can perform the shuffle.
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Figure 10.One-way latency for voice packets with a varying
number of users and 100 Yodel servers.

five data centers in different countries: Virginia (us-east-1),
Ireland (eu-west-1), London (eu-west-2), Paris (eu-west-3),
and Frankfurt (eu-central-1). We chose these regions to mini-
mize the network latency between servers while maximizing
the number of independent “trust zones” that the servers
operate in. The links between Virginia and Frankfurt had the
highest latency, with a weekly average of 90ms (round-trip);
the latencies between servers in Europe ranged from 15ms
to 40ms [1].

Each Yodel server ran on a c5.9xlarge EC2 instance (Intel
Xeon 3.0 GHz CPUs with 36 cores, 72 GB of memory, and
a 10Gbit/s link). On each server, we dedicated 30 cores to
running circuit messaging subrounds for the current round,
and the remaining 6 cores to running circuit setup (including
noise generation and verification) for the next round.
We simulated millions of users by having servers create

extra circuits during circuit setup (2 per simulated user). Even
though users don’t connect to these circuits, each circuit
corresponds to the load of a real voice call. However, we
exclude the cost of generating the extra circuit setup onions
(which would normally be done by clients) in our results.

Two real users ran the voice call client at their homes
in Boston, which were used to measure end-to-end latency
and throughput. The maximum round-trip latency from both
users to a Yodel server was 90ms. The real users ran the
Alpenhorn [15] dialing protocol to agree on a shared secret
out-of-band. Lastly, the Karaoke [16] chat system was used
for circuit exchange, but it ran on separate servers.
All experiments, except for those in §6.3, simulated the

assumption that servers are honest with 80% probability,
which required that users’ messages pass through 15 hops to
achieve Yodel’s security goal. The experiments also targeted
a failure probability of 10−8, which means that each server
generated around 3700 noise circuits in every round when
Yodel was deployed with 100 servers. Finally, the relative
standard deviation of each data point is ≤ 6%.

6.1 Yodel achieves sub-second latency
Figure 10 shows the results of measuring the end-to-end
latency of voice packets through Yodel as we varied the
number of users connecting to 100 servers. The results show
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that 100 Yodel servers can support voice calls for 5 million
users with under 1 second of one-way latency. Beyond 5
million users, the latency grows to 1.4 seconds, which we
consider too high for voice calls—Yodel would need more
servers to support voice calls for that user load. Beyond 8
million users, packet loss between servers made it difficult
to sustain the end-to-end throughput needed for a voice call
with LPCNet.

We also evaluated Yodel using the standard Opus audio
codec that is used in most VoIP applications. Opus with the
lowest quality settings uses 5× more bandwidth than LPC-
Net, hence Yodel is unable to support as many users in this
configuration, as shown in Figure 10. With Opus, 100 servers
can support 1 million voice calls with 965ms of latency.

Yodel provides a seamless audio transition between rounds
by running circuit setup for the next round in the background
of the current round. To avoid interfering with circuit mes-
saging, we use only a few cores on each server to setup
circuits. Figure 11 shows the time it took to run circuit setup
on 6 of the 36 cores in our VMs, with a varying number of
users. The results show that Yodel is able to complete circuit
setup in under 40 seconds with 8 million users. Since rounds
start every five minutes, circuit setup finishes with plenty of
time to spare, enabling Yodel to provide continuous audio
playback to users over long conversations.

6.2 Yodel scales by adding servers
Yodel is designed to support more users by adding a pro-
portional number of servers. To evaluate if this is the case,
we measured the end-to-end latency of Yodel with a vary-
ing number of servers and a proportional number of users.
We ran two experiments. In the first experiment, we added
25K users to the system every time we added a server to the
network. In the second, we added 50K users per server.
Figure 12 shows the results, which indicate that Yodel’s

latency goes up slightly as the system scales to more servers
and users. The reason is that the number of noise circuits
required for security is dependent on the number of servers
in the system (as explained in §4). For example, with 200
servers each server is required to create 4× as many noise
circuits as in a configuration with 50 servers, resulting in
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increased latency. Nevertheless, 200 servers can support 5
million users with 848ms of latency.

6.3 Stronger trust assumptions improve latency
Our baseline assumption is that servers are honest with a
probability of 80%, which requires paths to consist of 15 hops.
Other trust assumptions translate into different path lengths,
as shown in Figure 8. Figure 13 shows the effect of path length
on Yodel’s latency. Increasing the path length causes a linear
increase in latency, but enables Yodel to tolerate a higher
chance of a server being compromised. If the adversary is
assumed to control the network but none of the servers
(100% honest servers), Yodel requires paths of length 2, which
translates into around 100ms of latency.

Figure 8 also compares Yodel withHerd [18], the only other
system that specifically aims to protect metadata for voice
calls. Herd assumes that the first server on a user’s path is
honest. If we make a similar assumption, then Yodel’s mixnet
needs 9 layers to meet our security goal, which results in
around 450ms of latency for 2 million users and 100 servers.
Herd with 10 million users and 1000 servers achieves 200ms
for users in North America, but its performance comes with
a weaker privacy guarantee, as we discuss in §8.
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6.4 Server costs are dominated by bandwidth
The most significant cost in running a Yodel server is the
bandwidth due to millions of ongoing voice calls (2 for each
user). Figure 14 shows the average transmit bandwidth usage
of a single server as we varied the number of users in the sys-
tem. The results show that with 5 million users using LPCNet,
a single Yodel server sends at a rate of 3 Gbit/s on average.
Our implementation could not sustain over 4.6Gbit/s across
the internet without significant packet loss, so 100 servers
could only support 1.75 million users using Opus.
The dashed lines in Figure 14 show the computed band-

width a Yodel server would need to send just audio (two calls
per user divided evenly among the servers), without any pro-
cessing or security guarantees. The results show that Yodel’s
bandwidth usage is nearly optimal in this regard. The reason
is that circuit messaging has no bandwidth overhead due to
onion-encryption and only a small amount of overhead due
to checksums between users.

Although Yodel’s bandwidth costs are high, we believe it is
possible to deploy Yodel by charging users for bandwidth. In
2016, the cost of a 10Gbit/s link from the U.S. to Europe was
around $4000/month [6], which suggests that Yodel could
charge users less than $1/year to cover bandwidth costs.

6.5 Yodel provides acceptable voice quality
We had several productive conversations over Yodel using
LPCNet and 5 million simulated users. The latency made it
clunky to interject in the middle of someone’s monologue,
but otherwise the human-to-human information exchange
was significantly higher than if we had been texting. We
recorded a short conversation over Yodel running in this
configuration, available at vuvuzela.io/yodel/audio-samples.

We found that voice quality with LPCNet was just as good
as with Opus, with some caveats. The voices in LPCNet
sounded robotic (or “metallic” as one user described it), but
LPCNet had less background “fuzz.” Opus (at 8 kbit/s) could
handle music (whereas LPCNet could not), and sounded like
a low quality cellphone connection. Overall, given these two
choices, we would deploy Yodel with LPCNet, since Opus
does not buy us much at these bitrates.

7 Limitations
Yodel’s most significant limitation is its high latency. Per-
ceptual studies [11] show that for conventional interactive
telephone-call-like service, 990ms is likely too high, and
would make it difficult to carry on fast conversations with
frequent interruptions. However, we believe that Yodel is
nonetheless useful for voice conversations with less frequent
interruptions, and in our experience, we were able to carry
on long conversations over Yodel. We believe that users who
value strong call metadata privacy may also tolerate this sort
of coarse-grained interactive communication.

Very large deployments. The amount of noise that every
Yodel server needs to generate grows linearly with the num-
ber of servers, which becomes a bottleneck in deployments
with several thousands of servers (e.g., at the scale of Tor,
which has 6000 servers). We believe that Yodel is practical
despite this limitation. The noise has relatively low over-
head in deployments with hundreds of servers (shown in
Figure 9 and evidenced in §6.2), which is comparable to the
deployments considered in prior work [13, 16].

Fault tolerance. Themore hops that a Yodel circuit includes,
the more likely it is that a message routes through a server
that’s down. For example, in §6 we evaluated Yodel with
15 hops. Under this deployment, if 2% of the servers are
down then about 30% of the messages will be lost. Thus,
Yodel is useful when only a few servers are down, and most
messages make it to their destination. Despite this limitation,
we believe that handling up to 2% faults can facilitate practical
deployments with hundreds of servers and a few servers that
are simultaneously unavailable. In terms of availability, Yodel
is a step forward over earlier systems [13, 16, 26, 30] where
a single faulty server causes the entire system to halt.

Distant users. In our experimental setup with servers lo-
cated in the US and Europe, users in Australia and South
America would experience higher latency (e.g., an additional
100ms of one-way latency) compared to what we observed
from our clients in Boston. A limitation of Yodel’s design
is that we can’t add servers to a new region to reduce the
latency for users in that region, without impacting the rest of
the users in the system. For example, if we added a server in
Australia to our experiments in §6.1, the end-to-end latency
would jump from 990ms to ∼3 seconds for all users in the
system, since Yodel’s latency is approximately the number
of hops times the maximum one-way latency between any
two servers. We believe this limitation is inevitable when the
anonymity set includes all connected users in the system.

Sybil attacks. An attacker may try to create many circuits in
order to DoS the system. To mitigate this risk, a deployment
of Yodel could rely on existing mechanisms to prevent Sybils
(e.g., user subscriptions or proof-of-work). However, fully
addressing this problem requires further research.

https://vuvuzela.io/yodel/audio-samples


8 Related work
Tor [7] supports existing VoIP software with acceptable la-
tency but is vulnerable to traffic analysis [20]. The circuits
used in Tor resemble the circuits in Yodel, with three crucial
differences that enable Yodel to defend against traffic anal-
ysis. First, Yodel targets a specific application (voice calls),
so its circuits operate in synchronous rounds to eliminate
any useful information from traffic patterns (e.g., timing and
message sizes). In Tor, an adversary can infer the path of user
messages across relays by correlating the times of incom-
ing and outgoing packets. Second, the synchronous design
allows Yodel’s circuits to be self-healing, which eliminates
any leakage from active attacks. In Tor, an adversary that
controls a relay could drop a message going through that
relay and then see which voice call dropped a packet as a
result, which would correlate the sender and receiver of that
message. Finally, our analysis shows that Yodel’s circuits
need to include at least two honest servers to resist attacks
from an adversary that fully controls the network. Yodel’s
circuits traverse more servers (e.g., 15 hops vs. Tor’s 3 hops)
to meet this requirement with high probability, even when
the adversary has also compromised a significant fraction of
the servers.

Herd [18] is a metadata-private VoIP system that defends
against traffic analysis, but it assumes the user connects via
an honest server. This assumption is problematic for two
reasons. First, it requires the user to make a tricky choice
about which server to trust when joining the system. Second,
it gives an attacker a single obvious target for compromising
a user’s metadata. In Yodel, users don’t have to choose which
servers to trust, and the cost to compromise any user in
the system is much higher: the attacker must compromise
a substantial fraction (e.g., well over 20%) of all the servers.
Another difference is that Herd provides a weaker notion
of privacy, called “zone anonymity”, which limits a user’s
anonymity set to the set of users that connect to Herd via the
same server. In Yodel, the adversary cannot learn which pairs
of users are communicating, regardless of which servers they
connect to.

Loopix [24] hides metadata by relaying messages through
several mix servers and randomly delaying messages at each
hop. Longer delays improve security by giving messages
more time to mix. However, even short delays of 0.5 seconds
on average per hop, across 3 hops, results in some messages
that experience 3 or more seconds of latency. The high vari-
ance latency makes Loopix a poor fit for voice calls.
Riffle [12] uses a similar hybrid mixnet design, where a

slow setup phase is used to bootstrap a faster communication
phase. In the setup phase, Riffle uses a verifiable shuffle (a
CPU-intensive cryptographic primitive) to create a permuta-
tion on each server, while defending against active attacks.
In the communication phase, servers reuse the permutations

across many rounds and identify active attacks using au-
thenticated encryption and accusation. In contrast, Yodel’s
self-healing circuits rely on honest servers to defend against
active attacks, which is far more efficient. For example, Riffle
supports 10,000 users with sub-second latency, but its ap-
proach does not scale as more users join: the latency grows
to 10 seconds with 100,000 users. Other systems that use
CPU-intensive cryptographic primitives to protect metadata,
like Pung [3], XRD [14], and Dissent [32], also suffer from
high latency.
Karaoke [16] is a horizontally scalable messaging system

that guarantees differential privacy for metadata by routing
messages through a mixnet and adding noise. Karaoke and
its predecessors [15, 26, 30] focus on scaling to many users,
but Karaoke’s minimum end-to-end latency (running with
no user load) is 6 seconds, which is too high for voice calls.
Furthermore, Karaoke’s differential privacy guarantee is a
poor fit for voice calls because the high rate of messaging
would quickly exhaust a user’s privacy budget.

The noise circuits in Yodel serve a simpler purpose than
the noisemessages in prior systems [16, 26, 30]. Prior systems
sample a random number of noise messages to obscure the
attacker’s observations and statistically bound the metadata
leakage for a single conversation. Yodel uses noise circuits to
ensure that users’ messages will mix with messages whose
routes are unknown to the adversary; no metadata leaks once
messages are mixed.

9 Conclusion
Yodel is a new system for metadata-private voice calls. Yo-
del achieves the performance required for voice calls by es-
tablishing circuits and relying on symmetric cryptography
for message processing. The system ensures user privacy
in the circuit-based messaging design through two insights,
guarded circuit exchange and self-healing circuits. We ana-
lyze Yodel’s privacy guarantees, implement the system, and
evaluate its performance in deployment over the internet
with servers located in several countries. With 100 servers,
our experiments demonstrate 990ms one-way message la-
tency for 5 million simulated users. More information and
future work will be available at https://vuvuzela.io.
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