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Abstract

SFSCQ is the first file system with a machine-checked
proof of security. To develop, specify, and prove SFSCQ,
this paper introduces DISKSEC, a novel approach for rea-
soning about confidentiality of storage systems, such as a
file system. DISKSEC addresses the challenge of specify-
ing confidentiality using the notion of data noninterfer-
ence to find a middle ground between strong and precise
information-flow-control guarantees and the weaker but
more practical discretionary access control. DISKSEC
factors out reasoning about confidentiality from other
properties (such as functional correctness) using a no-
tion of sealed blocks. Sealed blocks enforce that the file
system treats confidential file blocks as opaque in the
bulk of the code, greatly reducing the effort of proving
data noninterference. An evaluation of SFSCQ shows
that its theorems preclude security bugs that have been
found in real file systems, that DISKSEC imposes little
performance overhead, and that SFSCQ’s incremental
development effort, on top of DISKSEC and DFSCQ, on
which it is based, is moderate.

1 Introduction

Many security problems today stem from bugs in software.
Although there has been significant effort in reducing
bugs through better testing, fuzzing, model checking, and
so on, subtle bugs remain and continue to be exploited.
Machine-checked verification is a powerful approach that
can eliminate a large class of bugs by proving that an
implementation meets a precise specification.

Prominent examples of machine-checked security
proofs include verification of strict isolation (with confi-
dentiality) for an OS kernel in CertiKOS [15], seL4 [26],
and Komodo [17], as well as security proofs in Iron-
clad [20] about applications like a password hasher and
a notary service. However, proving the security of sys-
tems with rich sharing semantics, such as file systems,
is an open problem. For example, unlike prior examples
that focus on strict isolation without controlled sharing,
users in a file system can share files with one another, and
the underlying implementation has shared data structures
(such as a buffer cache or write-ahead log) that contain
data from different users.

Proving security for a file system requires addressing
two key challenges. The first challenge lies in specify-
ing security. Integrity can be expressed as simply as a
functional correctness property. Confidentiality is more

challenging to specify. For example, consider a natural
specification for readdir, which allows the file system to
return the names in a directory in any order. This nonde-
terminism could be abused by a buggy or malicious file
system to leak confidential file data through careful ma-
nipulation of the order of readdir results. Furthermore,
nondeterminism is essential to a file system, because file
systems must deal with crashes, which can occur nonde-
terministically at any time.

One approach to specifying confidentiality is to for-
mulate it as a noninterference property, such as in most
information-flow-control systems. This means that the
execution of one process (a potential victim processing
confidential data) cannot influence the execution of an-
other process (an adversary trying to learn that data). Non-
interference can be stated concisely, and is easy for appli-
cations to use. However, information-flow-control style
guarantees are stronger than what file systems aim for.
Instead, file systems aim for weaker notions of confiden-
tiality, along the lines of discretionary access control on
files that reveal some metadata, such as file lengths.

A second challenge lies in proving confidentiality. Con-
fidentiality is a “two-safety” property [34], which requires
reasoning about pairs of executions to show that an ad-
versary cannot observe any differences correlated with
confidential data. However, reasoning about pairs of exe-
cutions is more complicated than reasoning about a single
execution, which is sufficient for proving integrity and
functional correctness.

This paper presents DISKSEC, an approach for proving
the security, and specifically confidentiality, for storage
systems, such as file systems. The paper demonstrates
the benefits of DISKSEC by developing, specifying, and
proving the security of a file system in a prototype called
SFSCQ, based on the DFSCQ file system [13].

Di1SKSEC addresses the specification challenge by us-
ing a notion of data noninterference that both matches
what file systems aim to provide and is concise and easy
to use for applications. Data noninterference requires that
an adversary’s execution be independent of the contents
of individual files, but it allows the adversary to observe
other metadata, such as file length and directory entries,
and allows for discretionary access control (i.e., a user
can choose to disclose their data).

To address the challenge of proving security, DISKSEC
factors out reasoning about confidentiality from all other
properties, such as functional correctness. DISKSEC does
so by introducing a notion of sealed blocks. This builds



on the intuition that file systems do not look inside of
the blocks that represent user file contents. As a result,
DISKSEC is able to treat confidential file blocks as opaque
in much of the file-system code, greatly reducing the need
for manual proofs of two-safety that consider pairs of
executions. The only manual proofs of two-safety are in
the top-level read and write system calls.

We implemented DISKSEC and SFSCQ in the Coq
proof assistant [35]. All proofs of security are machine-
checked by Coq, eliminating the possibility of bugs that
violate SFSCQ’s specification. An evaluation of SFSCQ
shows that its specifications are complete enough to prove
confidentiality of a simple application. The evaluation
also shows that DISKSEC’s approach allowed us to de-
velop SFSCQ with a modest amount of effort, and that
SFSCQ achieves comparable performance to the DFSCQ
file system that it is based on.

The contributions of this paper are:

e SFSCAQ, the first file system with a machine-checked
proof of confidentiality. SFSCQ has a concise specifi-
cation that captures discretionary access control using
data noninterference, and deals with nondeterminism
due to crashes.

e DISKSEC, an approach for specifying and proving
confidentiality for storage systems that reduces proof
effort. DISKSEC uses the idea of sealed blocks to
factor out reasoning about confidentiality from most
of the file system code.

e An evaluation that demonstrates that DISKSEC’s ap-
proach leads to negligible performance overheads in
SFSCQ, that it precludes the possibility of confiden-
tiality bugs that have been found in existing file sys-
tems, and that SFSCQ’s specification allows applica-
tions to reason about their confidentiality.

Our SFSCQ prototype has several limitations. Since
it relies on Coq’s extraction to Haskell, inherited from
DFSCQ, its trusted computing base (TCB) includes the
Haskell runtime and compiler. The version of SFSCQ
with fully machine-checked proofs does not support
changing permissions. A newer version of SFSCQ sup-
ports dynamic permissions but has a few proofs that have
not been repaired to reflect this change. Finally, SFSCQ’s
access-control mechanisms are relatively simple, support-
ing owned and public files but not groups or separate read
and write permissions.

2 Related Work

DI1SKSEC builds on a large body of prior work in several
dimensions, as we discuss in the rest of this section.

Data noninterference. DISKSEC’s notion of data non-
interference builds on prior work on formalizing noninter-
ference properties [19, 25, 26, 29, 30, 32]. Specifically,

data noninterference can be thought of as a specializa-
tion of abstract noninterference [18], relaxed noninterfer-
ence [24], or observation functions [15]. One difference
in our approach is that data noninterference stops at the
file-system API boundary; applications are not subject
to data-noninterference policies. This matches well the
traditional discretionary access-control policies enforced
by file systems.

Formalizing data noninterference requires reasoning
about two executions, since confidentiality is a two-safety
property [34]. In this context, our contribution lies in a
specification and a proof style based on sealed blocks that
helps us prove a data-noninterference two-safety property
about the file system.

Machine-checked security in systems. Several prior
projects have proven security (and, specifically, confi-
dentiality) properties about their system implementations:
selL4 [23, 26], CertiKOS [15], and Ironclad [20]. For
selL.4 and CertiKOS, the theorems prove complete isola-
tion: CertiKOS requires disabling IPC to prove its security
theorems, and seL.4’s security theorem requires disjoint
sets of capabilities. In the context of a file system, com-
plete isolation is not possible: one of the main goals of a
file system is to enable sharing. Furthermore, CertiKOS
is limited to proving security with deterministic specifi-
cations. Nondeterminism is important in a file system
to handle crashes and to abstract away implementation
details in specifications.

Ironclad proves that several applications, such as a no-
tary service and a password-hashing application, do not
disclose their own secrets (e.g., a private key), formu-
lated as noninterference. Also using noninterference, Ko-
modo [17] reasons about confidential data in an enclave
and showing that an adversary cannot learn the confiden-
tial data. Ironclad and Komodo’s approach cannot specify
or prove a file system: both systems have no notion of a
calling principal or support for multiple users and there
is no possibility of returning confidential data to some
principals (but not others). Finally, there is no support for
nondeterministic crashes.

Information flow and type systems. Another approach
to ensuring security is to rely on types or runtime en-
forcement mechanisms. Although this does not give a
machine-checked theorem of security, we build on aspects
of this approach, namely, the sealed disk has typed blocks.
Type systems and static-analysis algorithms, as with
Jif’s labels [27, 28] or the UrFlow analysis [14], have been
developed to reason about information-flow properties of
application code. However, these analyzers are static and
would be hard to use for reasoning about data structures
inside of a file system (such as a write-ahead log or a
buffer cache) that contain data from different users.



Bug description Filesystem(s) year
anyone can change POSIX ACLs  btrfs [5], gfs2 [3] 2010
anyone can change POSIX ACLs  NFS [8] 2016
file permissions can be changed

by writing to hidden file reiserfs [2] 2010
truncated data can be accessed btrfs [7] 2015
crash can expose deleted data ext4 [9] 2017
crash can expose data ext4 [22] 2014
can overwrite append-only file extd [4], btrfs [6] 2010
can overwrite arbitrary files ext4 [1] 2009

Figure 1: Bugs in various Linux file systems that can lead to data-
disclosure or integrity violations.

Dynamic tools, such as Jeeves and Jacqueline [37, 38]
and Resin [39], deal with dynamic data structures but
require sophisticated and expensive runtime enforcement
mechanisms. DISKSEC avoids the overhead of runtime
enforcement and an additional trusted runtime checker.

Formalizing file-system security. Prior work has exten-
sively studied the security guarantees provided by file sys-
tems, both formally and informally [10]. However, none
of the prior work articulated a precise, machine-checkable
model and specification for file-system security.

Symbolic models of cryptography. Our proof strategy
is related to techniques introduced to reason about crypto-
graphic protocols. Many cryptographic-protocol proofs
are done in the Dolev-Yao model of perfect cryptog-
raphy [16]. There programs are modeled as algebraic
expressions, which developers reason about using equa-
tional axioms, like that decryption is the inverse of encryp-
tion, when called with identical symmetric keys. No equa-
tions allow breaking encryption without knowing the key.
This model is attractive for its simplicity, and protocol-
analysis tools like ProVerif [11] and Tamarin [33] build on
it. HACL* [40] uses a similar proof strategy for proving
its cryptographic library. DISKSEC’s block-sealing ab-
straction extends this idea with the notion of a permission
associated with each sealed block.

3 Motivation: bugs

File systems are an important building block for appli-
cations, which rely on the file system for security. For
example, a mail server relies on the file system to ensure
that data written to one user’s mailbox file does not end
up in some other user’s mailbox file. Unfortunately, file
systems have had bugs that allowed for data disclosure or
modifying other users’ files: we list several such bugs in
Figure 1. In this section we describe several of these bugs
in more detail.

File-system data leak. ext4 has an optimization called
delayed allocation where new blocks for files are not ac-
tually allocated (but simply tracked) until they must be
flushed to disk. It is important that even after a crash,

blocks allocated in this manner have their new data writ-
ten before ending up as part of the file; otherwise the old
data in the block is leaked, potentially disclosing data
from any user. For some time ext4 used its write-ahead
log to ensure the new data was written atomically with the
metadata changes to the file. An optimization introduced
in 2012 removed this write-ahead logging [36], reasoning
that the new data was always written to disk immediately
with delayed allocation, before flushing the log. This opti-
mization is incorrect: the disk may reorder writes so that
the journal is actually written to disk first, exposing the
old data on crash; the bug was fixed in 2016 by restoring
the old behavior of writing the newly allocated blocks
through the write-ahead log.

Access-control checks. File systems implement sophis-
ticated policies for controlled sharing, such as file permis-
sions, append-only or read-only files, and shared directo-
ries. It is easy for file-system developers to make mistakes
in implementing these policies. For example, several file
systems forgot to correctly implement append-only files
when the file was being modified through a special in-
terface for efficiently moving file data [4, 6]. In these
examples, the file system did not read or write the file
data itself but instead changed the data-block pointers in-
side of the file’s inode. Another example is the privileged
nfsd daemon, which forgot to check permissions when
local users changed POSIX ACLs on a file [8]. A final
example is a file system that stored metadata (including
ACLs) in a separate file but failed to prevent users from
directly modifying that separate file [2].

4 Goal

The goal of DISKSEC is to use machine-checked verifica-
tion to ensure the absence of security bugs in file systems.
Using a proof assistant (Coq) to check our proofs ensures
that we consider all possible corner cases in our imple-
mentation when proving that it meets our specification.
Thus, as long as our specification excludes the possibility
of certain bugs, such as the ones described in the previous
section, Coq will provide a high degree of assurance that
no such bugs can exist in the implementation.

4.1 Threat model

From the perspective of verification, we would like to
have confidence that the file system is secure purely based
on the file system’s security specification. This means that
we have to treat the developer of the file system with an
adversarial mindset. This subsumes all possible bugs that
a well-meaning but error-prone developer might introduce
into the implementation.

As aresult, our threat model is that the adversary both
develops the file system and runs an adversarial appli-
cation on top of the file system in an attempt to obtain



confidential file data. However, the adversary does pro-
vide a proof that their file-system implementation meets
our security specification. The potential victim runs on
top of the same file system but sets their permissions so
that the confidential files are not accessible to the adver-
sary’s process. Our goal is to ensure that the security
specification is so strong that it prevents leaks even when
the file-system developer is colluding with adversarial
processes running on top of the file system.

Our threat model is focused on proving that the file-
system implementation has no confidentiality bugs, rather
than proving the absence of bugs in the environment out-
side of the file system. Thus, we assume that our model
of how the file-system implementation executes is correct.
That is, we are not concerned with bugs in unverified
software or hardware outside of the file system, or users
mounting malicious disk images. We do prove that mkfs
produces a correct image, but ensuring confidentiality on
top of an intentionally corrupted file system image is dif-
ficult, even without formal verification. We also do not
reason about timing channels, as we do not model time.

4.2 Challenges

The most difficult aspect of formally proving the security
of a file system lies in guaranteeing confidentiality. This
is difficult for several reasons.

Two-safety. First, proving confidentiality is more diffi-
cult than proving functional correctness: as mentioned
earlier, confidentiality is a two-safety property. Functional
correctness is a one-safety property because a violation
of functional correctness can be demonstrated by a single
execution. For instance, if an application wrote one byte
to a file and then read back a different byte, this single
execution shows that the file system is incorrect. Thus,
functional correctness of a file system is a theorem that
says that all executions meet the spec (i.e., there are no
such violations). Integrity properties, such as ensuring
that one user cannot corrupt another user’s data, are an
example of a one-safety functional-correctness property
and can be handled using standard verification techniques.

In contrast, demonstrating a violation of confidential-
ity requires two executions, where the results observed
by an adversary differ depending on the secret data. For
instance, consider a file system with block-level dedupli-
cation that also exposes the number of free blocks. An
adversary who wants to learn the contents of a victim’s
file could write their guess for the victim’s block into the
adversary’s own file and then check whether the num-
ber of free blocks stayed the same or decreased. If the
file system implemented deduplication across users, this
attack allows an adversary to learn whether their guess
block was already present in the file system, thus inferring
whether the victim has that data.

In the above example, looking at a single execution
does not allow one to directly conclude that data was
leaked, because the system appears to be functioning
correctly. Determining that data is leaking requires one
to consider a pair of executions, in which the adversary
performs the same operations, but the confidential user
data is different. If these two executions produce different
adversary-observable results, the adversary is able to infer
information about confidential data.

By stating confidentiality as a two-safety property, the
above deduplication example would violate confidential-
ity, and thus could not appear in an implementation that
was proven to achieve confidentiality. Specifically, sup-
pose the starting states of the two executions differed in
the contents of a confidential file, where in one execu-
tion the file matched the adversary’s guess and in the
other execution it didn’t match. In this case, the number
of free blocks returned by the adversary would differ in
the two executions, which would not be allowed by the
confidentiality definition.

Nondeterminism and probabilities. Another complica-
tion in proving confidentiality lies in the fact that many
specifications, including those in the file system, are non-
deterministic. Some nondeterminism is unavoidable be-
cause file systems must deal with crashes (e.g., due to
power failure), which can occur at any time. Thus, it is
impossible to know what are the exact contents of the disk
after a crash; the on-disk state could reflect any prefix of
the writes issued by the file system. Modern disks com-
plicate this situation even further by buffering writes in
memory inside the disk controller; as a result, the writes
can be made durable out-of-order, and the state of the
disk after a crash might reflect some out-of-order writes.
Even in the absence of crashes, the file system implemen-
tation may want to use randomness (e.g., to randomize
directory hash tables), which makes the execution non-
deterministic.

Other nondeterminism comes from specifications that
hide irrelevant details. For instance, the inode allocator
in the file system does not specify which precise inode
number will be returned; instead, its specification sim-
ply states that it will return some inode number that is
not already in use. As another example, the specification
for readdir in a file system likely allows the files in a
directory to be returned in any order. The use of nonde-
terminism is important for keeping specifications concise
and for allowing implementations to change (e.g., to im-
plement performance optimizations) without modifying
the specification.

Any nondeterminism is a potential leak of confidential
data. The nondeterministic specification of the block allo-
cator from above does not preclude the allocator from
leaking confidential data, because it could, in theory,
choose the next inode number based on the confiden-



tial contents of files, without violating its specification
(i.e., still returning some unused inode number). Sim-
ilarly, the nondeterministic specification for readdir is
also not a good confidentiality specification, because a
bug might cause the order of entries returned by readdir
to be affected by the contents of some confidential file.

Even the nondeterminism associated with the state of
the disk after a crash can be taken advantage of by an
adversarial file-system implementation to leak data. For
instance, a high-performance file-system specification
allows the file system to delay flushing data to disk. An
adversarial implementation could choose whether to flush
data immediately or defer the flush based on one bit of
confidential data from a victim’s file. To take advantage
of this, an adversary could wait for the system to crash
and, after the crash, check whether any writes appear to
have been lost. If so, the adversary concludes the file
system must have deferred the writes, which would have
only happened if the confidential bit was zero. This, in
turn, can allow the adversary to infer confidential bits.

More generally, the possibility of leaking confidential
data arises because nondeterministic specifications cap-
ture what might be possible, but an adversary may have
more precise information about the actual probabilities of
different outcomes. For instance, consider a hypothetical
system call that returned random data. An adversarial
file-system implementation could leak confidential data
through this system call by sometimes returning uniformly
random data and sometimes returning confidential data
from some file. A naive view of this system call might be
that, since any return value is possible, this system call
is not leaking any data. However, an adversary can lever-
age the distribution of outcomes to learn confidential data
over time, by invoking this system call many times and
observing what value is being returned more frequently
than one would expect from a uniform distribution.

Indirect disclosure. Yet another complication with con-
fidentiality is that an adversarial file system might not
immediately leak confidential data. For example, an ad-
versarial file system may wait for a legitimate user to read
confidential data, at which point the file system would
be allowed to access this data, since it has to return it to
the user. However, in addition to returning this data, an
adversarial file system could also stash away a copy of
it, so that the adversary can later retrieve it. For instance,
the file system could change the order of entries in an
on-disk directory structure, or change the allocated inode
numbers or block numbers, based on the confidential data
that it wants to leak. Preventing this attack is difficult
because the adversarial file system appears to have legiti-
mate access to the user’s data when operating on behalf
of that user.

File-system complexity. Finally, file systems are com-
plex software. Linux ext4, for instance, consists of ap-
proximately 50,000 lines of code. Even the simple veri-
fied DFSCAQ file system consists of thousands of lines of
executable code [13]. The proofs of functional correct-
ness for DFSCQ are already tens of thousands of lines of
Coq code. The complexity of proving two-safety, which
is a more challenging property, could easily spiral out of
control.

5 Specification: data noninterference

To capture the notion of confidentiality in a file system,
DISKSEC defines the notion of data noninterference.
Loosely speaking, data noninterference states that two
executions are indistinguishable with respect to specific
confidential data (e.g., the contents of a file). Data non-
interference allows an application to conclude that an
adversary cannot learn the contents of a file from the file
system but may be able to learn other information about
the file (e.g., its length, its creation time, the fact that it
was created at all, etc.). Furthermore, data noninterfer-
ence does not place any restrictions on application code,
which captures the discretionary aspect of typical file-
system permissions. This notion intuitively corresponds
to the security guarantees provided by Linux file systems.
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Figure 2: Overview of DISKSEC’s approach to reasoning about confi-
dentiality.

Two-safety formulation. DISKSEC formulates data
noninterference in terms of two-safety, as shown in Fig-
ure 2. Specifically, data noninterference considers two
executions that run the same code but start from different
states. In Figure 2, the executions are shown as horizontal
transitions between states, indicated by the gray outlines.
The executions consist of a step by the user (running
procedure pyger, corresponding to some system call) and
then a step by the adversary (running p,qy, corresponding
to some other system call). Although Figure 2 shows
one particular pair of executions, DISKSEC’s theorems
consider all possible such pairs of executions.

The starting states in these two executions (s and 56)
agree on all data visible to the adversary but could have
different contents of confidential files. We call these two
states equivalent,qy, to indicate that they are equivalent
with respect to the adversary. This equivalence is indi-
cated by the squiggly line in Figure 2. The essence of



data noninterference is allowing the states to differ in
the contents of confidential data while requiring all other
metadata (such as file length, directory order, etc.) to
remain the same.

The definition of data noninterference consists of two
requirements. The first is state noninterference, which
requires that after every transition, the resulting states
remain equivalent,g,. This is indicated in Figure 2 by the
squiggly lines between s; and s/, as well as between s,
and s5. This requirement ensures that confidential data
from s¢ and s;, does not suddenly become accessible to
the adversary in a subsequent state, and it addresses the
indirect-data-disclosure challenge (e.g., an adversarial
implementation of the read system call stashing away the
results).

The second requirement is return-value noninterfer-
ence, which requires that transitions by the adversary
return exactly the same values in both executions. For
example, Figure 2 shows that the adversary’s p,qy returns
r1 in the top execution and r} in the bottom execution.
Return-value noninterference requires that r; = r}, as
indicated by the dotted arrow. This prevents the adver-
sary from learning any confidential data, such as through
collusion with an adversarial file system that affects the or-
der of readdir results, or through missing access control
checks.

Capturing file-system security. Achieving the two re-
quirements from data noninterference ensures that the
adversary cannot obtain confidential data from the file
system. This is because state noninterference maintains
equivalence,qyy, regardless of what the adversary does (i.e.,
the squiggly lines will continue to connect states in all
possible pairs of executions), and any attempts by the
adversary to observe information will produce identical
results, based on return-value noninterference, because
they run in equivalent,qy states.

The discretionary nature of data noninterference shows
up in the fact that legitimate users can obtain different
results depending on the confidential data. For example,
in Figure 2, the results of the user’s execution of pyger, 7o
and r6, might be different, because pyser could correspond
to the user reading a confidential file. At this point, a user
has the discretion to disclose this information (e.g., by
writing it to a public file). Data noninterference does not
prevent this, by design, because it is attempting to model
the standard discretionary access control in a POSIX file
system.

Defining return-value noninterference. Figure 3
presents DISKSEC’s definition of return-value noninter-
ference, in a simplified notation. This definition relies on
the definition of exec, which describes how procedures
execute. exec takes four arguments: the procedure that
is executing (p), the principal on whose behalf p is

running (u), the starting state (st0), and the randomness
for this execution (rand). exec returns two things:
the outcome and an unseal trace, which we describe
later. The outcome can be either Finished st’ r,
indicating that the procedure ended in state st’ and
returned r, or Crashed st’, indicating that the system
crashed in state st’. The unseal traces are irrelevant for
now and are used only as part of the proof technique
described in §6. This definition also relies on a notion
of two states being equivalent for a particular principal,
equivalent_for_principal, which captures the intuitive
notion equivalent,q, from above.

Definition equivalent_for_principal u st® stl :=
(* all parts of st0® and stl that are accessible to
principal u are identical *).

Definition ret_noninterference ‘(p :
forall u st® st0®’ rand ret tr® stl,
exec p u st® rand =
Some (Finished st®’ ret, tr®) ->
equivalent_for_principal u st® stl ->
forall stl’ tril,
exec p u stl rand =
Some (Finished stl’ ret’, trl) ->
ret’ = ret.

proc T) :=

Figure 3: Definition of return-value noninterference, capturing that
return values do not leak other users’ confidential data.

The definition of return-value noninterference captures
the intuition about the adversary not being able to learn
information about confidential data: the return value ob-
tained by the adversary by running some code does not
depend on the confidential data. To make this precise,
ret_noninterference of procedure p considers pairs of
states, st® and st1, which are equivalent as far as some
principal u is concerned. Here, u is representing the adver-
sary, and confidential data is represented by the difference
between st@ and st1 that the adversary should not be able
to observe. If u runs procedure p in state st® and gets
return value ret, then it must also have been possible for
the adversary to get the same return value, ret, if he ran
p in state st1 instead.

Defining state noninterference. Figure 4 presents
DISKSEC’s definition of state noninterference, which
complements return-value noninterference. This defini-
tion helps DISKSEC deal with the indirect-disclosure chal-
lenge from §4.2. This definition considers two principals:
a viewer and a caller. The definition intuitively says
that, by running procedure p, the caller will not create any
state differences observable to viewer.

More formally, state_noninterference considers two
executions by caller, running the same procedure p, with
the same exact arguments (encoded inside of p). If the
caller runs p in two states that appear equivalent to viewer,
then the resulting states in res® and res1 will still appear
equivalent to viewer. This definition includes the possi-
bility of a crash while running p.



Definition equiv_state_for_principal u res® resl :=
exists st® stl,
equivalent_for_principal u st® stl /\
(res® = Crashed st® /\ resl = Crashed stl \/
exists vO vl,
res® = Finished st® vO /\
resl = Finished stl vl).

Definition state_noninterference ‘(p : proc T) :=
forall viewer caller st® rand res® tr® stl,
exec p caller st® rand = Some (res®, tr®) ->
equivalent_for_principal viewer st® stl ->
forall resl trl,
exec p caller stl rand = Some (resl, trl) ->
equiv_state_for_principal viewer res® resl.

Figure 4: Definition of state noninterference, capturing that caller
does not indirectly disclose state to viewer.

Handling non-determinism and probabilities. Both
Figure 3 and Figure 4 quantify over an argument called
rand that is passed to exec. rand is an oracle that sup-
plies all non-determinism used during execution, includ-
ing non-deterministic values used by the file system im-
plementation (e.g., getting a random number), as well
as non-determinism representing the effect of a crash
(i.e., the point at which the crash occurred, and which
recent writes made it to disk). The execution semantics,
exec, queries the rand oracle whenever it needs to make
a non-deterministic decision. The exec function is de-
terministic given a specific rand, but DISKSEC allows
non-determinism by permitting different executions with
different non-determinism oracles. One way to think of
this rand oracle is that it represents a seed for a logical
random-number generator.

Factoring out the randomness rand from the execu-
tion semantics exec helps DISKSEC handle probabilities
without fully formalizing probabilistic reasoning in Coq.
Since the exec function is deterministic (given a specific
randomness oracle rand), the probability of a particu-
lar outcome is the sum of the probabilities of different
rand oracles that lead to that outcome. Following the
random-number generator seed analogy, the probability
of an outcome is simply the fraction of seeds that lead to
that outcome.

Di1SKSEC’s theorem statements require that, for any
choice of rand, both the return values and states are equiv-
alent. This ensures that the probabilities of equivalent
return values and states are also equal, since the probabili-
ties of these outcomes are simply the sums of probabilities
of individual rand values. Using the samples to relate the
probabilities of outcomes is reminiscent of a coupling
argument [21], although we do not explicitly reason about
probabilities in DISKSEC. Since the probabilities of the
outcomes are equal, this prevents an adversary from learn-
ing confidential data based on the observed probabilities
of different outcomes.

6 Proof approach: sealed blocks

Proving that every system call in a file system satis-
fies ret_noninterference and state_noninterference
would require a proof that reasons about two executions,
which is complex. To reduce proof effort, DISKSEC in-
troduces an implementation and proof approach called
sealed blocks. This approach factors out reasoning about
confidentiality of files from most of the file-system logic,
by reasoning about the confidentiality of disk blocks. The
intuition behind this approach is threefold. First, all confi-
dential data lives in file blocks. Second, the file system
itself rarely needs to look inside of the file blocks. Finally,
permissions on files translate directly into permissions on
the underlying blocks comprising the file.

*

def read(...): def write(...):

Syscall
wrappers:

if can_accessQ: perm = file.acl
unseal (block) seal(block, perm)

| !

. block block
File system:
perm perm
Read Write
block block
Logical disk: block block block
perm perm perm
[} ¥
Real disk: ‘ data ‘ data ‘ data ‘

Figure 5: Overview of DISKSEC’s proof approach using sealed blocks.

Figure 5 presents an overview of DISKSEC’s block-
sealing approach. There are three parts to the block-
sealing approach. The first is to create a logical disk
where every disk block is associated with a permission,
which defines the set of principals that can access this
block. Some permissions are public, indicating that the
block is accessible to anyone. Other permissions might
restrict access to some users, indicating that this block
is storing confidential file data. DISKSEC is agnostic to
the specific choice of principals or permissions; that is,
all of DISKSEC is parameterized over arbitrary types for
principals and permissions. The logical disk is purely a
proof strategy and does not appear at runtime; the real
disk, shown at the bottom of Figure 5, has no permissions.

The second part is a sealed-block abstraction, indicated
by shaded blocks in Figure 5. A sealed block represents
the raw block contents and the associated permission, but
the file system cannot directly access a sealed block’s
contents. Instead, the file-system implementation must
explicitly call seal() and unseal() to translate between
sealed blocks and their raw contents. These seal() and
unseal () functions are also purely part of the proof and
do not appear at runtime.



The code of the file system can read and write arbi-
trary blocks on disk, but the result of a read is a sealed
block that must be explicitly unsealed if needed. The
file-system internals can unseal public blocks (e.g., con-
taining allocator bitmaps or inodes) but cannot unseal
private blocks. This avoids the need to reason about the
file-system implementation when proving confidentiality,
because the file-system implementation never has access
to confidential data.

The third part is the wrappers for system calls that han-
dle confidential data, namely, read() and write(). These
wrappers are responsible for explicitly calling seal () and
unseal () to translate between the raw data seen by the
user (on top of the system call) and the sealed blocks that
are handled in the rest of the file-system implementation.

DISKSEC’s sealed-block approach is a good fit for the
challenges outlined in §4.2. Specifically, there are very
few places where a file system must access the actual con-
tents of a file’s disk block—namely, in the wrappers for
the read() and write() syscalls. As a result, most speci-
fications in a file system remain largely the same. The key
difference is that the specifications promise that the proce-
dure in question does not look inside of any confidential
blocks. This means that any nondeterminism present in
the specification cannot be used to leak confidential data.

This approach allows file-system developers to avoid
proving explicit confidentiality theorems for most of the
file system, but it still allows DISKSEC to conclude that
confidentiality is not violated. DISKSEC provides a the-
orem that proves two-safety for any file-system imple-
mentation that correctly uses the sealed-block abstraction.
As a result, the file-system developer need not reason
about complex two-safety theorems and can limit their
reasoning to single executions.

6.1 Formalizing sealed blocks

To formally define DISKSEC’s sealed-block abstraction,
DISKSEC uses the notion of a handle to represent a sealed
block. DISKSEC requires the developer to perform two
steps. The first is to modify their code to use the sealed-
block abstraction: that is, to pass around handles for
blocks and to call seal() and unseal () as necessary. The
second is to prove that their code correctly follows the
unsealing rules. This boils down to ensuring that sealed
blocks are unsealed only when the principal has appropri-
ate permission for that block.

Di1SKSEC models this by extending traditional Hoare
logic to reason about unseal operations. Specifically,
DISKSEC builds on CHL [12], where functional correct-
ness specifications are written in terms of pre- and post-
conditions. DISKSEC, first, extends the execution se-
mantics (as we describe next) to produce an unseal trace
consisting of unseal operations and, second, extends the

specifications to require that the unseal trace contain only
allowed unseals.

We expect that systems built on top of DISKSEC would
often group multiple blocks into a single object (e.g.,
multiple blocks comprising a single file in a file system).
To help developers reason about all of these blocks sharing
the same permissions, DISKSEC introduces the notion of a
domain. This is a layer of indirection between blocks and
permissions. Specifically, sealed blocks point to a domain
ID (e.g., an inode number in the case of a file system),
and the domain in turn specifies the permission for those
blocks (e.g., the permission reflected in the inode’s data
structure).

Execution model. DISKSEC’s execution model requires
the implementation to be written in a domain-specific
language, based on CHL and implemented inside of Coq,
which provides several primitive operations. These opera-
tions include reading and writing the disk, manipulating
sealed blocks by sealing and unsealing, as well as others
for sequencing computation, returning values, flushing
disk writes, etc.

Figure 6 shows a simplified version of DISKSEC’s exe-
cution semantics. The semantics are defined as a function
that takes the code being executed (of type proc T), the
principal u running the operation (of type Principal), the
starting state st (of type State), and a randomness oracle
rand. The function produces a tuple consisting of a result
(of type result T) and a trace of unsealed permissions
(of type trace). The function is allowed to return None (as
indicated by the option type) when there is no execution
possible for the supplied randomness (e.g., the randomly
chosen handle is already in use).

For example, consider the case that handles the Read a
operation, which describes the execution of reading ad-
dress a from disk. There are three sub-cases. If the ad-
dress is out of bounds, the Read returns a handle for a
zero block, with an empty unseal trace. If the handle h
supplied by the randomness oracle is already in use, no
execution is possible. Otherwise, the Read initializes the
new handle to represent the block from address a, with
the block’s domain ID, and returns that handle, with an
empty trace because no blocks were unsealed.

As another example, the Unseal h operation produces
a nonempty trace, consisting of the permission of the
sealed block whose handle h was unsealed, as long as the
handle was valid (otherwise, Unseal returns zero). Since
the sealed block points to a domain ID, dom, the semantics
of Unseal look up the corresponding permissions of that
domain. One omitted rule handles concatenation of unseal
traces when a developer sequences one statement after
another.

The ChangePerm dom newperm operation allows the de-
veloper to change permissions of a domain. This oper-
ation is used in implementing chown. The semantics of



Inductive nondet_decision :=

| RandomHandle (h:handle)

(* Other types of non-determinism omitted for space *)
| CrashHere.

Definition oracle := list nondet_decision.

Definition exec ‘(code:proc T) (u:Principal) (st:State)
(rand:oracle) : option (result T * trace) :=

match code, rand with

ChangePerm _ _, CrashHere => None

_, CrashHere => Some (Crashed st, [])

Read a, RandomHandle h =>

if addr_out_of_bounds st a then
Some (Finished st hzero, [])

else if handle_used st h then

None
else
let data := disk_block_data st a in
let dom := disk_block_dom st a in
let st’ := install_handle st h (data, dom) in

Some (Finished st’ h, [])
Write a h, _ =>
if handle_used st h then

let data := handle_data st h in
let dom := handle_dom st h in
let st’ := disk_block_write st a (data, dom) in

Some (Finished st’ tt, [])
else
Some (Finished st tt, [])
(* Some transitions omitted for space reasons *)
| Seal data dom, RandomHandle h =>
if handle_used st h then
None
else
let st’ := install_handle st h (data, dom) in
Some (Finished st’ h, [])
Unseal h, _ =>
if handle_used st h then
let data := handle_data st h in

let dom := handle_dom st h in
let perm := domain_perm st dom in
Some (Finished st data, [perm])
else
Some (Finished st zero, [])
| ChangePerm dom newperm, _ =>

let oldperm := domain_perm st dom in

let st’ := domain_set_perm st dom newperm in
Some (Finished st tt, [oldperm])

| _, _ => None

end.

Figure 6: Execution semantics with logging of unseal operations.

ChangePerm modify the permission associated with the
domain, and produce an unseal trace containing the do-
main’s old permission, to reflect that data with that per-
mission may have been disclosed. Since the domains are
purely a proof construct, ChangePerm is a purely logical
operation, which does not perform any actions at runtime.

Finally, exec describes the possible crash behaviors
of the system. For example, the case for _, CrashHere
states that it is possible to crash in the starting state, re-
gardless of what code was being executed, if the ran-
domness oracle tells us CrashHere. A combination of
other rules, not shown, allow crashing in the middle

of a sequence of operations. The very first case, for
ChangePerm _ _, CrashHere, says that ChangePerm can-
not crash. This reflects the fact that ChangePerm s a purely
logical operation.

Specification and verification of wunseal rules.
Di1SKSEC requires developers to write specifications
for each procedure, using pre- and postconditions. The
postcondition describes how the procedure modifies the
state of the system, along with what must be true of the
procedure’s return value, assuming that the precondition
(a predicate over the system state and the procedure’s
arguments) held at the start of the procedure.

To reason about what blocks a procedure might unseal,
DISKSEC augments specification postconditions with re-
quirements about the permissions that appear in the unseal
trace produced by the execution of the procedure.

Definition unseal_safe ‘(p : proc T) :=

forall u st rand res tr,
exec p u st rand = Some (res, tr) ->
forall perm,
In perm tr -> can_access u perm.

Figure 7: Definition of unseal safety.

Figure 7 shows DISKSEC’s definition of unseal safety.
This definition says that procedure p is “unseal-safe” if,
for every principal u that runs this procedure and any start-
ing state st, all permissions produced by this procedure
in its unseal trace tr will be accessible to the calling prin-
cipal. Proving unseal safety leads to a proof obligation
for the file-system developer—namely, proving that the
implementation will unseal a block only if the current
principal has access to it.

File-system implementation code falls into three cat-
egories with respect to proving unseal safety. The first
category are procedures that do not invoke any Unseal
operations. For these procedures, the resulting unseal
trace is always empty, and DISKSEC is able to prove
unseal safety without any developer input. Most of the
file-system code falls in this category.

The second category are procedures that unseal pub-
lic blocks. Examples include accessing inodes, allocator
bitmaps, directories, etc. These procedures do produce
unseal traces containing permissions, but all of the per-
missions should be public. Thus, the developer’s job is
to show that these permissions are indeed public; once
this is established, showing that the current principal has
access is straightforward (since every principal has access
to public permissions).

To prove that the permissions are indeed public, the
developer relies on representation invariants of the file
system. For example, the invariant for the block allocator
states that all of the bitmap blocks are public. The devel-
oper can assume this invariant within any implementation
of the block allocator API, which helps her prove that



the block in question has public permissions. In turn the
developer must prove that the invariant is preserved by
every procedure (including across crashes and recovery),
and show that it is established at initialization time by
mkfs.

The final category are procedures that unseal private
blocks. In a file system, this happens only in the imple-
mentation of the read system call, which returns file data
to the caller. The implementation (wrapper) of the read
system call contains explicit code to obtain the current
principal, get the file’s ACL (access control list) from the
inode, and compare them. The developer’s job is to prove
that this code correctly performs the permission check.
This proof typically relies on the file’s representation in-
variant, which asserts that every file block is tagged with
a permission matching the ACL stored in the inode.

Definition unseal_public ‘(p :
forall u st rand res tr,
exec p u st rand = Some (res, tr) ->
forall perm,
In perm tr -> perm = Public.

proc T) :=

Figure 8: Definition of unseal_public.

DI1SKSEC also provides a stronger version of unseal-
safety, as shown in Figure 8, called unseal_public. A
procedure satisfies this definition if all of its code falls in
the first two categories above: that is, the procedure either
unseals no blocks at all or unseals only public blocks.
This alternative definition is strictly stronger than unseal-
safety; any procedure that satisfies unseal_public is also
unseal-safe. The distinction between these two notions
will help the developer prove noninterference theorems,
as we will describe in §6.2.

Crashes. DISKSEC’s approach naturally extends to rea-
soning about crashes. DISKSEC’s disk-crash model builds
on the CHL model of disk crashes [12, 13]. After a crash,
disk blocks can be updated nondeterministically, as in
CHL, based on outstanding writes that are in the disk’s
write buffer but have not been flushed yet to durable stor-
age. However, domains always follow the data for pend-
ing writes; that is, logically, the content of the disk block
is updated atomically together with its domain ID.

All handles are invalidated after a crash, to model the
fact that the computer reboots and all in-memory state
is lost. All recovery code, such as log replay or fsck, is
proven correct in DISKSEC, which means that it must
follow the same block-sealing rules as the rest of the file-
system code. This ensures that no data can be disclosed
by the recovery code.

6.2 Proving noninterference

To help the developer prove the two types of noninter-
ference, DISKSEC provides helper theorems. Figure 9
shows the first one, which proves return-value noninter-
ference based on unseal-safety. DISKSEC proves this
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theorem by considering all operations performed by pro-
cedure p. Each operation must produce the same result in
the two executions being considered, since the states are
equivalent for the principal in question, u. The only way
in which the executions could differ is if they unsealed a
block that was not accessible to u. However, unseal_safe
says that this is impossible. This theorem also applies to
procedures that are unseal_public, since that notion is
strictly stronger than unseal_safe.

Theorem unseal_safe_to_ret_noninterference :
forall ‘(p : proc T),
unseal_safe p -> ret_noninterference p.

Figure 9: Theorem connecting unseal-safety to return-value noninter-
ference.

Figure 10 shows the second theorem provided by
DISKSEC, for reasoning about state noninterference. This
theorem requires that the procedure satisfy the stronger
definition, unseal_public, to ensure state noninterfer-
ence. The intuition for why this theorem is true lies in
the fact that a procedure that unseals only public blocks
cannot obtain any confidential data in the first place. As a
result, this procedure’s execution will be identical regard-
less of the contents of confidential blocks, and thus the
state after this procedure’s execution will remain equiva-
lent from the adversary’s point of view. DISKSEC proves
this theorem formally in Coq.

Theorem unseal_public_to_state_noninterference :
forall ‘(p : proc T),
unseal_public p -> state_noninterference p.

Figure 10: Theorem connecting unseal_public to state noninterfer-
ence.

DISKSEC does not provide a general-purpose theorem
for reasoning about state noninterference for procedures
that satisfy only the weaker notion of unseal-safety (i.e.,
that unseal private blocks), such as the read () system call.
Such procedures can indirectly disclose data as described
in §4.2 to legitimately unseal confidential data on behalf
of the currently executing principal but then stash a copy
of it. It is up to the file-system developer to prove the
state noninterference of those procedures. §7 will discuss
in more detail how SFSCQ structures its implementation
to simplify these proofs; in the case of SFSCQ, the only
system call that requires this type of reasoning is read.

6.3 Code generation

To generate efficient executable code, DISKSEC must
avoid explicitly sealing and unsealing blocks. To do so,
DISKSEC eliminates any notion of handles, sealing, or
unsealing at runtime. DISKSEC does so by representing
each handle with the actual disk-block contents them-
selves, when generating executable code. DISKSEC’s
theorems ensure that the code does not look at the disk
contents at runtime unless it has the appropriate permis-
sions. As a result, it is safe to perform this elimination.



Similarly, this allows the sealing and unsealing operations
also to be eliminated from runtime code.

7 Case study: File system

To evaluate whether DISKSEC allows specifying and prov-
ing confidentiality for a file system, we applied DISKSEC
to the DFSCQ verified file system, producing the SESCQ
verified secure file system, as described below.

7.1 Specifying security

The core specification of confidentiality for SFSCQ lies
in the write system call, as shown in Figure 11. This
specification says that the data argument to the write
system call remains confidential. This is stated formally
by considering two different executions, starting from the
same state st, where different data (data® and datal) are
written to the same offset off of the same file £. The
results, res® and res1, must be equivalent for any adver-
sary adv that does not have permission to access file f.
Since equivalent_state_for_principal considers both
crashing and noncrashing executions, this definition en-
sures that the data passed to write remains confidential
regardless of whether the system crashes or not.

Theorem write_confidentiality :
forall f off data® datal caller st rand res® tro0,
exec (write f off data®) caller st rand =
Some (res®, tr®) ->
exists resl tril,
exec (write f off datal) caller st rand =
Some (resl, trl) /\
forall adv,
~ can_access adv (file_perm st f) ->
equiv_state_for_principal adv res® resl.

Figure 11: Confidentiality specification for the write system call.

The other part of the security specification lies in the
chown system call, which changes the permissions on
existing files, and thus affects what data is or is not con-
fidential. Because chown can disclose the contents of
a previously confidential file, the standard definition of
state non-interference from Figure 4 does not hold for
chown. Specifically, even if an adversary viewer could
not distinguish states st® and st1 before some caller
executed chown, the adversary may nonetheless be able to
distinguish st® and st1 after the chown runs because the
adversary may now have permission to read the previously
confidential file.

The security of chown is defined by a specialized ver-
sion of state non-interference, which considers three cases.
The first case is that the adversary viewer does not have
access to the file after the chown (i.e., is not the new
owner). In this case, state non-interference holds. The
second case is that the adversary viewer does gain access
to the file after chown (i.e., is the new owner), but the file
had the same contents in the two executions (i.e., in states
st® and stl). In this case, state non-interference holds
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as well. Finally, the adversary viewer may gain access
to the file and the files had different contents in the two
executions. In this case, state non-interference does not
apply. Figure 12 summarizes this formally.

Definition chown_state_noninterference f new_owner :=
forall viewer caller st® rand res® tr® stl,
exec (chown f new_owner) caller st® rand =
Some (res®, tr®) ->
( file_data st® f = file_data stl f \/
viewer <> new_owner ) ->
equivalent_for_principal viewer st® stl ->
exists resl trl,
exec (chown f new_owner) caller stl rand =
Some (resl, trl) /\
equiv_state_for_principal viewer res® resl.

Figure 12: Confidentiality specification for the chown system call.

The write and chown specifications, shown above, are
the only parts of the security specification that are specific
to the file system, because they define where confidential
data enters the system in the first place, and how permis-
sions on that confidential data can change. Somewhat
counter-intuitively, no special treatment is required in the
specifications of other system calls, such as read. In-
stead, it suffices to prove the two general noninterference
theorems for all system calls (i.e., ret_noninterference
and state_noninterference). This is because we do not
want to consider specific attacks, such as whether read
has a missing access-control check. Instead, DISKSEC’s
noninterference definitions ensure that confidential data
cannot be disclosed regardless of what system calls the
adversary tries to use.

Integrity of the file system is a functional-correctness
property and thus is covered by SFSCQ’s specifications,
alongside other correctness properties. Integrity did not
require SFSCQ to use any machinery from DISKSEC for
reasoning about confidential data.

7.2 Modifying the implementation

Changing representation invariants. DFSCQ consists
of many modules, such as the write-ahead log, the bitmap
allocator, the inode module, etc. Each module has its
own invariant that describes how that module’s state is
represented in terms of blocks. For example, the bitmap
allocator describes how the free bits are packed into disk
blocks, where they are stored on disk, and the semantics
of each bit.

For SFSCQ, we modified all invariants that describe
disk blocks to state the domain IDs that go along with
those blocks. For instance, we modified the invariant of
the allocator to state that the bitmap blocks are public. We
modified the write-ahead log layer to expose the underly-
ing domain IDs on disk blocks to modules implemented
on top of the write-ahead log (in addition to modifying
the log invariant to state that the log metadata is public).



The only nonpublic data is the file contents. We modi-
fied the file invariant to state that the domain ID of every
file block matches the file’s inode number, and the permis-
sions for a particular domain ID match the ACL stored
in the inode with the inode number matching the domain
ID.

One surprising issue that we encountered came up in
the DFSCQ write-ahead log. For performance, DFSCQ’s
write-ahead log used checksums to verify block contents
after a crash. As a result, the recovery procedure unsealed
blocks from the write-ahead log after a crash, including
blocks that contain confidential data.

To address this issue, we switched to a barrier-based
write-ahead log instead, which is the default design of
Linux ext4. Instead of using checksums, the barrier-
based write-ahead log issues a disk flush between writ-
ing the contents of new log entries and updating the log
header. (DFSCQ already included an implementation of
this barrier-based write-ahead log but did not use it by
default.)

Modifying code. Loosely speaking, DFSCQ modules
handle two kinds of blocks: blocks that they manipulate
(e.g., the bitmap allocator manipulating the bitmap blocks)
and blocks that they pass through (e.g., the write-ahead
log handling reads and writes as part of a transaction, or
the file layer handling file reads and writes). The first cate-
gory required a module to access the block contents, so we
added Seal and Unseal operations accordingly. Virtually
all operations that fell in this category involved sealing
and unsealing public data. For the second category, we
did not seal or unseal the data and instead transparently
passed through the handle representing the block; as a
result, the module was oblivious to the domain IDs asso-
ciated with the disk block.

Private data is sealed and unsealed at the top of the
SFSCQ implementation; that is, in the implementation of
the read and write system calls. We modified the write
system-call implementation to Seal the blocks with the
file’s inode number as the domain ID, before processing
them further. We modified the read system call to im-
plement the permission-checking logic—i.e., reading the
ACL from the file’s inode, checking whether the currently
running principal has access to the file, and unsealing the
block only if the check passes.

Changing intermediate specifications. We augmented
the Hoare-logic specifications of all internal SFSCQ pro-
cedures to require that the procedure be unseal_public.
This change required little manual effort, because we
simply changed the underlying definition of the Hoare-
logic specification to require unseal_public. For the
write-ahead log, we added additional constraints in the
specification of the log_write procedure, requiring that
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the blocks written as part of a transaction must be public,
as described above.

7.3 Proving security

Reproving functional correctness. Many existing
proofs in DFSCQ broke after we made the above changes.
The proofs broke for three reasons: there were now ad-
ditional Seal and Unseal operations in the code (e.g.,
the bitmap allocator now sealed and unsealed its bitmap
blocks), the logical representation of a block changed
to include a domain ID, and the specification changed
(e.g., augmenting the invariant to state the domain ID
of a block). This required manually tweaking most of
the proofs to fix them. The proof changes were simple
since the code’s logic and the proof argument remained
unchanged.

Proving unsealing. In addition to fixing existing proofs,
SFSCQ’s specifications required us to prove that the
Unseal operation was used correctly. For most proce-
dures, the specification required that the procedure satisfy
unseal_public. Proving that only public blocks were
unsealed required us to demonstrate that the block was
indeed public by referring to the invariant.

For the implementation of the read system call, which
unseals private data, we had to prove that read correctly
implements the permission check in its code. This means
proving that read calls Unseal only after checking permis-
sions, and that the code for the permission check returns
“allowed” only if the current principal really does have
permission to access the file contents. This proof mostly
boiled down to showing that the code implementing the
access-control check in read matches the logical permis-
sion required by the specification.

Proving noninterference. Proving that SFSCQ pro-
vides confidentiality required us to prove three theorems.
The first is that write implements the specification from
Figure 11. This shows that SFSCQ will treat data passed
by an application to write as confidential. The second
is that system calls satisfy ret_noninterference. This
shows that an adversary cannot use any of SFSCQ’s sys-
tem calls to learn confidential data. The final is that all
system calls satisfy state_noninterference. This shows
that SFSCQ will not indirectly leak a user’s data when
the user invokes an otherwise-benign system call. Taken
together, these theorems allow an application to formally
conclude that its data remains private, as we show in §9.

Proving ret_noninterference was the easiest, using
DI1SKSEC’s theorem from Figure 9. All SFSCQ proce-
dures are proven to be unseal safe, so no further proof
effort is required.

Proving state_noninterference was simple for all
system calls except read, because those system calls sat-
isfy unseal_public, allowing us to apply DISKSEC’s
theorem from Figure 10. For read, we structured the



system-call implementation in two parts: a read_helper,
which returns the handle to the data read from the file,
and a wrapper around read_helper that unseals the data
and returns it to the user. read_helper is unseal_public,
allowing us to apply DISKSEC’s theorem from Figure 10.
The wrapper required a manual proof, but the proof was
short since the wrapper is two lines of code.

Finally, to prove that write meets its confidentiality
specification, we similarly split write into a wrapper and
a write_helper. The wrapper’s job is to seal all input
data and pass the handles to write_helper. Much as with
read, this reduced the proof effort to just the wrapper.

8 Implementation

We implemented DISKSEC by extending the CHL frame-
work from FSCQ [12]. The changes involved modifying
the model of the disk to keep track of logical permissions,
adding primitive operations to seal and unseal blocks, and
changing the execution semantics to keep track of unseal
permissions, as shown in Figure 6. We also changed the
meaning of Hoare-logic specifications to require either
unseal-safety or the stronger unseal_public notion. The
source code of DISKSEC and SFSCAQ is publicly avail-
able at https://github.com/mit-pdos/£fscq.

We developed SFSCQ by modifying the DESCQ file
system [13], making the changes described in §7. In par-
ticular, as mentioned in §7.2, we switched from DFSCQ’s
checksum-based write-ahead log to a two-barrier-based
log in SFSCQ (which is also the default for Linux ext4).
SFSCQ retains all other optimizations from DFSCQ, in-
cluding log-bypass writes, deferred commit, etc (with
proofs). As with DFSCQ, we produce executable code
by extracting the Coq implementation to Haskell and
running it on top of FUSE. To erase the block seal-
ing and unsealing operations at runtime, DISKSEC uses
the Extract Constant command in Coq to represent
DI1SKSEC’s handles using the raw blocks themselves, and
it implements Seal and Unseal as no-ops.

We built two versions of DISKSEC and SFSCQ. The
first version is fully proven, but lacks support for changing
permissions on an existing file (i.e., changing the permis-
sions on a file would require copying the file’s data into a
new file with the new permissions), and lacks support for
randomness oracles. The second version extends the first
version with support for randomness oracles and dynamic
permissions. These changes caused existing proofs to
break, and a few of them have not been repaired. See the
source code for details.

The DISKSEC approach worked reasonably well for
SFSCQ because the underlying FSCQ file system does
not unseal user data unless the user explicitly reads it. The
one exception was in the checksum-based write-ahead log,
as mentioned above. Other file system features that look
at file contents might also be a challenge for DISKSEC,
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such as proactive checksum verification of file contents,
de-duplication, storing small file contents in the inode
itself, etc.

9 Evaluation

This section experimentally answers the following ques-
tions:

o Are SFSCQ’s specifications trustworthy? That is, are
SFSCQ’s theorems sufficient for applications to prove
confidentiality of their own data? What assumptions
do these proofs rely on?

e How much effort was required to develop DISKSEC,
and to use DISKSEC to prove the security of SFSCQ?

e How much runtime overhead does DISKSEC’s ap-
proach impose in SFSCQ?

9.1 Specification trustworthiness

To evaluate the trustworthiness of SFSCQ’s specifica-
tions, we performed several analyses.

End-to-end application confidentiality. To demon-
strate that SFSCQ’s specifications capture confidentiality
in a useful way, we developed a simple application on top
of SFSCAQ that copies a file, wrote a confidentiality spec-
ification for this application (namely, that the application
does not leak the data of the copied file), and proved it.
This application tests two aspects of SFSCQ’s specs. The
first is, does SFSCQ’s specification actually guarantee
confidentiality? The second has to do with SFSCQ’s
discretionary access control model: can application devel-
opers demonstrate that they are not inadvertently leaking
data, despite having the discretion to do so?

We were able to prove the correctness and security of
our implementation of cp. This suggests that SFSCQ’s
specifications capture sufficient information for cp to con-
clude that its data remains confidential, and that it is
possible for application developers to show that they do
not abuse their discretionary privileges by leaking data.

Bug case study. To evaluate whether SFSCQ’s specifica-
tions would eliminate real security bugs, we qualitatively
analyzed the bugs presented in §3 to determine whether
SFSCQ’s theorems preclude the possibility of that bug.
Figure 13 shows the results. Functional correctness theo-
rems preclude the possibility of integrity bugs. DISKSEC
state noninterference precludes the possibility of all confi-
dentiality bugs in our study. No bugs were prevented by
return-value noninterference, because return-value non-
interference captures a particularly simple kind of bug,
such as the file system forgetting to check the ACL on
open(). No file-system developers made this mistake in
our study. Nonetheless, return noninterference is impor-
tant for completeness of SFSCQ’s theorems. Overall, the
results demonstrate that SEFSCQ’s theorems preclude the
possibility of all studied bugs.


https://github.com/mit-pdos/fscq

Description Theorem
violated
anyone can change POSIX ACLs [3, 5, 8] state NI
reiserfs permissions can be changed
by writing to hidden file [2] state NI
truncated data can be accessed [7] state NI
crash can expose deleted data in ext4 [9] state NI
crash can expose data in ext4 [22] state NI
can overwrite append-only file in ext4, btrfs [4, 6]  integrity
can overwrite arbitrary files in ext4 [1] integrity

Figure 13: Security bugs in Linux file systems and which SFSCQ
theorem precludes them.

Trusted computing base. SFSCQ assumes the correct-
ness of several components. SFSCQ assumes that Coq’s
proof checking kernel is correct, because it verifies
SFSCQ’s proofs. SFSCQ assumes that the Haskell run-
time and support libraries (and the underlying Linux ker-
nel) do not have bugs, since SFSCQ generates executable
code through extraction to Haskell. SFSCQ assumes that
DI1SKSEC’s model of the disk is accurate. In particular, all
non-determinism in DISKSEC’s execution semantics must
be “realizable,” in the sense that it is actually possible for
an execution to observe all specified non-determinism
(e.g., crashing at any point), and this non-determinism
must be independent of confidential data. All proofs in
D1SKSEC and SFSCQ are checked by Coq.

9.2 Effort

To understand how much effort was required to verify
D1sKSEC and SFSCQ, we compared SFSCQ to the
implementation of DFSCQ on which SFSCQ is based.
Figure 14 shows the results (counting the sum of lines
removed and lines added), breaking down the differences
into several categories. The core infrastructure, including
improvements to DFSCQ’s CHL, amounted to around
9,300 lines. We made significant changes to DFSCQ to
develop SFSCQ, but many of these changes were mechan-
ical fixes to proofs to address small changes. In addition,
using DISKSEC in SFSCQ required around 1,900 lines of
new code and proofs. Porting DFSCQ to the first version
of DISKSEC (without support for changing permissions)
took one author about 3 months, and another 2 months to
mostly finish support for permission changes.

Component Changes to DFSCQ
DISKSEC 9,283
DFSCQ proof fixes —10,471, +26,433

(36,094 total)
SFSCQ impl. and proofs 1,837
Verified cp application 407

Figure 14: Lines of code change required to implement DISKSEC and
apply it to build SFSCQ. Counts measure the diff between DFSCQ and
SFSCQ.
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9.3 Performance

We expect that the performance overhead of DISKSEC
is nearly zero, because most of its code changes (such
as handles, sealing, and unsealing) are eliminated in the
process of generating executable code. (All of the Seal
and Unseal operations turn into return statements.) The
only exception is checking permissions when reading data
from a file; the original DFSCQ implementation had no
permission checks, which we added in SFSCQ.

To check that DISKSEC introduces almost no overhead,
we used two microbenchmarks (LFS smallfile and large-
file benchmarks [31] as modified by DFSCQ [13]). As a
baseline, we compare with two versions of DFSCQ, on
which SFSCQ is based. The first is unmodified DFSCQ.
The second is a version of DFSCQ with a two-disk-barrier
write-ahead log (instead of its default checksum-based
log). This matches the modification we made to SFSCQ,
as mentioned in §7.2. For comparison with other file
systems, such as Linux ext4, we refer the reader to the
detailed evaluation in the DFSCQ paper [13: §7.4].

Figure 15 shows the results, which confirm that
SFSCQ performs nearly identically to DFSCQ in the
same logging configuration. The use of a two-disk-barrier
write-ahead log incurs some performance overhead for
smallfile; largefile performance is not impacted because
its file data writes bypass the log.

Filesystem smallfile largefile
DFSCQ 446 files/s 108 MB/s
DFSCQ (no checksums) 295 files/s 109 MB/s
SFSCQ 299 files/s 100 MB/s

Figure 15: Benchmarks showing performance of SFSCQ compared to
DFSCQ and a version of DFSCQ with a comparable logging implemen-
tation. Numbers shown are the median of 30 runs.

10 Conclusion

SFSCAQ is the first file system with a machine-checked
proof of security. DISKSEC enabled us to specify
and prove SFSCQ’s confidentiality with modest effort.
Di1SKSEC’s key techniques are the use of a sealed block
abstraction, as well as the notion of data noninterference
as the top-level theorem statement, which is a good fit
for discretionary file access control. Experimental eval-
uation shows that SFSCQ’s theorems would preclude
security bugs that have been found in real file systems,
that SFSCQ’s development effort was moderate, and that
there is little performance impact of using DISKSEC.
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