
Algorand: Scaling Byzantine Agreements
for Cryptocurrencies

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, Nickolai Zeldovich

MIT CSAIL

ABSTRACT

Algorand is a new cryptocurrency that confirms transactions

with latency on the order of a minute while scaling to many

users. Algorand ensures that users never have divergent

views of confirmed transactions, even if some of the users

are malicious and the network is temporarily partitioned.

In contrast, existing cryptocurrencies allow for temporary

forks and therefore require a long time, on the order of an

hour, to confirm transactions with high confidence.

Algorand uses a new Byzantine Agreement (BA) protocol

to reach consensus among users on the next set of trans-

actions. To scale the consensus to many users, Algorand

uses a novel mechanism based on Verifiable Random Func-

tions that allows users to privately check whether they are

selected to participate in the BA to agree on the next set

of transactions, and to include a proof of their selection in

their network messages. In Algorand’s BA protocol, users

do not keep any private state except for their private keys,

which allows Algorand to replace participants immediately

after they send a message. This mitigates targeted attacks

on chosen participants after their identity is revealed.

We implement Algorand and evaluate its performance on

1,000 EC2 virtual machines, simulating up to 500,000 users.

Experimental results show that Algorand confirms transac-

tions in under a minute, achieves 125× Bitcoin’s throughput,

and incurs almost no penalty for scaling to more users.

1 INTRODUCTION

Cryptographic currencies such as Bitcoin can enable new

applications, such as smart contracts [24, 50] and fair pro-

tocols [2], can simplify currency conversions [12], and can

avoid trusted centralized authorities that regulate transac-

tions. However, current proposals suffer from a trade-off

between latency and confidence in a transaction. For exam-

ple, achieving a high confidence that a transaction has been

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for

third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

SOSP’17, October 28–31, 2017, Shanghai, China.

© 2017 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-5085-3/17/10.

https://doi.org/10.1145/3132747.3132757

confirmed in Bitcoin requires about an hour long wait [7].

On the other hand, applications that require low latency

cannot be certain that their transaction will be confirmed,

and must trust the payer to not double-spend [46].

Double-spending is the core problem faced by any cryp-

tocurrency, where an adversary holding $1 gives his $1 to two

different users. Cryptocurrencies prevent double-spending

by reaching consensus on an ordered log (“blockchain”) of

transactions. Reaching consensus is difficult because of the

open setting: since anyone can participate, an adversary can

create an arbitrary number of pseudonyms (“Sybils”) [21],

making it infeasible to rely on traditional consensus proto-

cols [15] that require a fraction of honest users.

Bitcoin [42] and other cryptocurrencies [23, 54] address

this problem using proof-of-work (PoW), where users must

repeatedly compute hashes to grow the blockchain, and

the longest chain is considered authoritative. PoW ensures

that an adversary does not gain any advantage by creating

pseudonyms. However, PoW allows the possibility of forks,

where two different blockchains have the same length, and

neither one supersedes the other. Mitigating forks requires

two unfortunate sacrifices: the time to grow the chain by one

block must be reasonably high (e.g., 10 minutes in Bitcoin),

and applications must wait for several blocks in order to

ensure their transaction remains on the authoritative chain

(6 blocks are recommended in Bitcoin [7]). The result is that

it takes about an hour to confirm a transaction in Bitcoin.

This paper presents Algorand, a new cryptocurrency de-

signed to confirm transactions on the order of one minute.

The core of Algorand uses a Byzantine agreement protocol

called BA⋆ that scales to many users, which allows Algo-

rand to reach consensus on a new block with low latency and

without the possibility of forks. A key technique that makes

BA⋆ suitable for Algorand is the use of verifiable random

functions (VRFs) [39] to randomly select users in a private

and non-interactive way. BA⋆was previously presented at a

workshop at a high level [38], and a technical report by Chen

and Micali [16] described an earlier version of Algorand.

Algorand faces three challenges. First, Algorand must

avoid Sybil attacks, where an adversary creates many

pseudonyms to influence the Byzantine agreement protocol.

Second, BA⋆ must scale to millions of users, which is far

higher than the scale at which state-of-the-art Byzantine

agreement protocols operate. Finally, Algorand must be re-

1

https://doi.org/10.1145/3132747.3132757

silient to denial-of-service attacks, and continue to operate

even if an adversary disconnects some of the users [30, 52].

Algorand addresses these challenges using several tech-

niques, as follows.

Weighted users. To prevent Sybil attacks, Algorand as-

signs a weight to each user. BA⋆ is designed to guarantee

consensus as long as a weighted fraction (a constant greater

than 2/3) of the users are honest. In Algorand, we weigh

users based on the money in their account. Thus, as long as

more than some fraction (over 2/3) of the money is owned by

honest users, Algorand can avoid forks and double-spending.

Consensus by committee. BA⋆ achieves scalability by

choosing a committee—a small set of representatives ran-

domly selected from the total set of users—to run each step

of its protocol. All other users observe the protocol mes-

sages, which allows them to learn the agreed-upon block.

BA⋆ chooses committee members randomly among all users

based on the users’ weights. This allows Algorand to ensure

that a sufficient fraction of committee members are honest.

However, relying on a committee creates the possibility of

targeted attacks against the chosen committee members.

Cryptographic sortition. To prevent an adversary from

targeting committee members, BA⋆ selects committee mem-

bers in a private and non-interactive way. This means that

every user in the system can independently determine if they

are chosen to be on the committee, by computing a func-

tion (a VRF [39]) of their private key and public information

from the blockchain. If the function indicates that the user

is chosen, it returns a short string that proves this user’s

committee membership to other users, which the user can

include in his network messages. Since membership selec-

tion is non-interactive, an adversary does not know which

user to target until that user starts participating in BA⋆.

Participant replacement. Finally, an adversary may tar-

get a committee member once that member sends a message

in BA⋆. BA⋆mitigates this attack by requiring committee

members to speak just once. Thus, once a committee member

sends his message (exposing his identity to an adversary),

the committee member becomes irrelevant to BA⋆. BA⋆
achieves this property by avoiding any private state (except

for the user’s private key), which makes all users equally

capable of participating, and by electing new committee

members for each step of the Byzantine agreement protocol.

We implement a prototype of Algorand and BA⋆, and use

it to empirically evaluate Algorand’s performance. Experi-

mental results running on 1,000 Amazon EC2 VMs demon-

strate that Algorand can confirm a 1 MByte block of transac-

tions in ∼22 seconds with 50,000 users, that Algorand’s la-

tency remains nearly constant when scaling to half a million

users, that Algorand achieves 125× the transaction through-

put of Bitcoin, and that Algorand achieves acceptable latency

even in the presence of actively malicious users.

2 RELATEDWORK

Proof-of-work. Bitcoin [42], the predominant cryptocur-

rency, uses proof-of-work to ensure that everyone agrees

on the set of approved transactions; this approach is of-

ten called “Nakamoto consensus.” Bitcoin must balance the

length of time to compute a new block with the possibil-

ity of wasted work [42], and sets parameters to generate a

new block every 10 minutes on average. Nonetheless, due

to the possibility of forks, it is widely suggested that users

wait for the blockchain to grow by at least six blocks be-

fore considering their transaction to be confirmed [7]. This

means transactions in Bitcoin take on the order of an hour

to be confirmed. Many follow-on cryptocurrencies adopt

Bitcoin’s proof-of-work approach and inherit its limitations.

The possibility of forks also makes it difficult for new users

to bootstrap securely: an adversary that isolates the user’s

network can convince the user to use a particular fork of the

blockchain [29].

By relying on Byzantine agreement, Algorand eliminates

the possibility of forks, and avoids the need to reason about

mining strategies [8, 25, 47]. As a result, transactions are

confirmed on the order of a minute. To make the Byzan-

tine agreement robust to Sybil attacks, Algorand associates

weights with users according to the money they hold. Other

techniques have been proposed in the past to resist Sybil

attacks in Byzantine-agreement-based cryptocurrencies, in-

cluding having participants submit security deposits and

punishing those who deviate from the protocol [13].

Byzantine consensus. Byzantine agreement protocols

have been used to replicate a service across a small group

of servers, such as in PBFT [15]. Follow-on work has shown

how to make Byzantine fault tolerance perform well and

scale to dozens of servers [1, 17, 34]. One downside of Byzan-

tine fault tolerance protocols used in this setting is that they

require a fixed set of servers to be determined ahead of time;

allowing anyone to join the set of servers would open up the

protocols to Sybil attacks. These protocols also do not scale

to the large number of users targeted by Algorand. BA⋆ is a

Byzantine consensus protocol that does not rely on a fixed

set of servers, which avoids the possibility of targeted attacks

on well-known servers. By weighing users according to their

currency balance, BA⋆ allows users to join the cryptocur-

rency without risking Sybil attacks, as long as the fraction of

the money held by honest users is at least a constant greater

than 2/3. BA⋆’s design also allows it to scale to many users

(e.g., 500,000 shown in our evaluation) using VRFs to fairly

select a random committee.

Most Byzantine consensus protocols require more than

2/3 of servers to be honest, and Algorand’s BA⋆ inherits

this limitation (in the form of 2/3 of the money being held

by honest users). BFT2F [36] shows that it is possible to

achieve “fork
∗
-consensus” with just over half of the servers

being honest, but fork
∗
-consensus would allow an adver-

sary to double-spend on the two forked blockchains, which

Algorand avoids.

2

Honey Badger [40] demonstrated how Byzantine fault tol-

erance can be used to build a cryptocurrency. Specifically,

Honey Badger designates a set of servers to be in charge

of reaching consensus on the set of approved transactions.

This allows Honey Badger to reach consensus within 5 min-

utes and achieve a throughput of 200 KBytes/sec of data

appended to the ledger using 10 MByte blocks and 104 par-

ticipating servers. One downside of this design is that the

cryptocurrency is no longer decentralized; there are a fixed

set of servers chosen when the system is first configured.

Fixed servers are also problematic in terms of targeted at-

tacks that either compromise the servers or disconnect them

from the network. Algorand achieves better performance

(confirming transactions in about a minute, reaching similar

throughput) without having to choose a fixed set of servers

ahead of time.

Bitcoin-NG [26] suggests using the Nakamoto consensus

to elect a leader, and then have that leader publish blocks

of transactions, resulting in an order of magnitude of im-

provement in latency of confirming transactions over Bitcoin.

Hybrid consensus [31, 33, 43] refines the approach of using

the Nakamoto consensus to periodically select a group of

participants (e.g., every day), and runs a Byzantine agree-

ment between selected participants to confirm transactions

until new servers are selected. This allows improving perfor-

mance over standard Nakamoto consensus (e.g., Bitcoin); for

example, ByzCoin [33] provides a latency of about 35 sec-

onds and a throughput of 230 KBytes/sec of data appended to

the ledger with an 8 MByte block size and 1000 participants

in the Byzantine agreement. Although Hybrid consensus

makes the set of Byzantine servers dynamic, it opens up the

possibility of forks, due to the use of proof-of-work consen-

sus to agree on the set of servers; this problem cannot arise

in Algorand.

Pass and Shi’s paper [43] acknowledges that the Hybrid

consensus design is secure only with respect to a “mildly

adaptive” adversary that cannot compromise the selected

servers within a day (the participant selection interval), and

explicitly calls out the open problem of handling fully adap-

tive adversaries. Algorand’s BA⋆ explicitly addresses this

open problem by immediately replacing any chosen com-

mittee members. As a result, Algorand is not susceptible to

either targeted compromises or targeted DoS attacks.

Stellar [37] takes an alternative approach to using Byzan-

tine consensus in a cryptocurrency, where each user can trust

quorums of other users, forming a trust hierarchy. Consis-

tency is ensured as long as all transactions share at least one

transitively trusted quorum of users, and sufficiently many

of these users are honest. Algorand avoids this assumption,

which means that users do not have to make complex trust

decisions when configuring their client software.

Proof of stake. Algorand assigns weights to users propor-

tionally to the monetary value they have in the system, in-

spired by proof-of-stake approaches, suggested as an alter-

native or enhancement to proof-of-work [3, 10]. There is a

key difference, however, between Algorand using monetary

value as weights and many proof-of-stake cryptocurrencies.

In many proof-of-stake cryptocurrencies, a malicious leader

(who assembles a new block) can create a fork in the network,

but if caught (e.g., since two versions of the new block are

signed with his key), the leader loses his money. The weights

in Algorand, however, are only to ensure that the attacker

cannot amplify his power by using pseudonyms; as long as

the attacker controls less than 1/3 of the monetary value,

Algorand can guarantee that the probability for forks is neg-

ligible. Algorand may be extended to “detect and punish”

malicious users, but this is not required to prevent forks or

double spending.

Proof-of-stake avoids the computational overhead of

proof-of-work and therefore allows reducing transaction con-

firmation time. However, realizing proof-of-stake in practice

is challenging [4]. Since no work is involved in generating

blocks, a malicious leader can announce one block, and then

present some other block to isolated users. Attackers may

also split their credits among several “users”, who might

get selected as leaders, to minimize the penalty when a bad

leader is caught. Therefore some proof-of-stake cryptocur-

rencies require a master key to periodically sign the correct

branch of the ledger in order to mitigate forks [32]. This

raises significant trust concerns regarding the currency, and

has also caused accidental forks in the past [44]. Algorand

answers this challenge by avoiding forks, even if the leader

turns out to be malicious.

Ouroboros [31] is a recent proposal for realizing proof-of-

stake. For security, Ouroboros assumes that honest users can

communicate within some bounded delay (i.e., a strongly

synchronous network). Furthermore, it selects some users

to participate in a joint-coin-flipping protocol and assumes

that most of them are incorruptible by the adversary for

a significant epoch (such as a day). In contrast Algorand

assumes that the adversary may temporarily fully control the

network and immediately corrupt users in targeted attacks.

Trees and DAGs instead of chains. GHOST [48], SPEC-

TRE [49], and Meshcash [5] are recent proposals for increas-

ing Bitcoin’s throughput by replacing the underlying chain-

structured ledger with a tree or directed acyclic graph (DAG)

structures, and resolving conflicts in the forks of these data

structures. These protocols rely on the Nakamoto consensus

using proof-of-work. By carefully designing the selection

rule between branches of the trees/DAGs, they are able to

substantially increase the throughput. In contrast, Algorand

is focused on eliminating forks; in future work, it may be

interesting to explore whether tree or DAG structures can

similarly increase Algorand’s throughput.

3 GOALS AND ASSUMPTIONS

Algorand allows users to agree on an ordered log of transac-

tions, and achieves two goals with respect to the log:

Safety goal. With overwhelming probability, all users

agree on the same transactions. More precisely, if one honest

3

user accepts transaction A (i.e., it appears in the log), then

any future transactions accepted by other honest users will

appear in a log that already contains A. This holds even for

isolated users that are disconnected from the network—e.g.,

by Eclipse attacks [29].

Liveness goal. In addition to safety, Algorand also makes

progress (i.e., allows new transactions to be added to the log)

under additional assumptions about network reachability

that we describe below. Algorand aims to reach consensus

on a new set of transactions within roughly one minute.

Assumptions. Algorand makes standard cryptographic

assumptions such as public-key signatures and hash func-

tions. Algorand assumes that honest users run bug-free

software. As mentioned earlier, Algorand assumes that the

fraction of money held by honest users is above some thresh-

old h (a constant greater than 2/3), but that an adversary can

participate in Algorand and own some money. We believe

that this assumption is reasonable, since it means that in

order to successfully attack Algorand, the attacker must in-

vest substantial financial resources in it. Algorand assumes

that an adversary can corrupt targeted users, but that an

adversary cannot corrupt a large number of users that hold a

significant fraction of the money (i.e., the amount of money

held by honest, non-compromised users must remain over

the threshold).

To achieve liveness, Algorand makes a “strong synchrony”

assumption that most honest users (e.g., 95%) can send mes-

sages that will be received by most other honest users (e.g.,

95%) within a known time bound. This assumption allows

the adversary to control the network of a few honest users,

but does not allow the adversary to manipulate the network

at a large scale, and does not allow network partitions.

Algorand achieves safety with a “weak synchrony” as-

sumption: the network can be asynchronous (i.e., entirely

controlled by the adversary) for a long but bounded period

of time (e.g., at most 1 day or 1 week). After an asynchrony

period, the network must be strongly synchronous for a rea-

sonably long period again (e.g., a few hours or a day) for

Algorand to ensure safety. More formally, the weak syn-

chrony assumption is that in every period of length b (think

ofb as a day or aweek), theremust be a strongly synchronous

period of length s < b (an s of a few hours suffices).

Finally, Algorand assumes loosely synchronized clocks

across all users (e.g., using NTP) in order to recover liveness

after weak synchrony. Specifically, the clocks must be close

enough in order for most honest users to kick off the recovery

protocol at approximately the same time. If the clocks are

out of sync, the recovery protocol does not succeed.

4 OVERVIEW

Algorand requires each user to have a public key. Algorand

maintains a log of transactions, called a blockchain. Each

transaction is a payment signed by one user’s public key

transferring money to another user’s public key. Algorand

grows the blockchain in asynchronous rounds, similar to

Bitcoin. In every round, a new block, containing a set of

transactions and a pointer to the previous block, is appended

to the blockchain. In the rest of this paper, we refer to Algo-

rand software running on a user’s computer as that user.

Algorand users communicate through a gossip protocol.

The gossip protocol is used by users to submit new transac-

tions. Each user collects a block of pending transactions that

they hear about, in case they are chosen to propose the next

block, as shown in Figure 1. Algorand uses BA⋆ to reach

consensus on one of these pending blocks.

BA⋆ executes in steps, communicates over the same gos-

sip protocol, and produces a new agreed-upon block. BA⋆
can produce two kinds of consensus: final consensus and

tentative consensus. If one user reaches final consensus,

this means that any other user that reaches final or tenta-

tive consensus in the same round must agree on the same

block value (regardless of whether the strong synchrony

assumption held). This ensures Algorand’s safety, since this

means that all future transactions will be chained to this

final block (and, transitively, to its predecessors). Thus, Al-

gorand confirms a transaction when the transaction’s block

(or any successor block) reaches final consensus. On the

other hand, tentative consensus means that other users may

have reached tentative consensus on a different block (as

long as no user reached final consensus). A user will con-

firm a transaction from a tentative block only if and when a

successor block reaches final consensus.

BA⋆ produces tentative consensus in two cases. First,

if the network is strongly synchronous, an adversary may,

with small probability, be able to cause BA⋆ to reach tenta-

tive consensus on a block. In this case, BA⋆will not reach
consensus on two different blocks, but is simply unable to

confirm that the network was strongly synchronous. Algo-

rand will eventually (in a few rounds) reach final consensus

on a successor block, with overwhelming probability, and

thus confirm these earlier transactions.

The second case is that the network was only weakly

synchronous (i.e., it was entirely controlled by the adversary,

with an upper bound on how long the adversary can keep

control). In this case, BA⋆ can reach tentative consensus

on two different blocks, forming multiple forks. This can in

turn prevent BA⋆ from reaching consensus again, because

the users are split into different groups that disagree about

previous blocks. To recover liveness, Algorand periodically

invokes BA⋆ to reach consensus onwhich fork should be used
going forward. Once the network regains strong synchrony,

this will allow Algorand to choose one of the forks, and then

reach final consensus on a subsequent block on that fork.

We now describe how Algorand’s components fit together.

Gossip protocol. Algorand implements a gossip network

(similar to Bitcoin) where each user selects a small random

set of peers to gossipmessages to. To ensuremessages cannot

be forged, every message is signed by the private key of its

original sender; other users check that the signature is valid

before relaying it. To avoid forwarding loops, users do not

4

Figure 1: An overview of transaction flow in Algorand.

relay the same message twice. Algorand implements gossip

over TCP and weighs peer selection based on how much

money they have, so as to mitigate pollution attacks.

Block proposal (§6). All Algorand users execute crypto-

graphic sortition to determine if they are selected to propose

a block in a given round. We describe sortition in §5, but at

a high level, sortition ensures that a small fraction of users

are selected at random, weighed by their account balance,

and provides each selected user with a priority, which can be

compared between users, and a proof of the chosen user’s

priority. Since sortition is random, there may be multiple

users selected to propose a block, and the priority deter-

mines which block everyone should adopt. Selected users

distribute their block of pending transactions through the

gossip protocol, together with their priority and proof. To

ensure that users converge on one block with high probabil-

ity, block proposals are prioritized based on the proposing

user’s priority, and users wait for a certain amount of time

to receive the block.

Agreement using BA⋆ (§7). Block proposal does not guar-

antee that all users received the same block, and Algorand

does not rely on the block proposal protocol for safety. To

reach consensus on a single block, Algorand uses BA⋆. Each
user initializes BA⋆with the highest-priority block that they

received. BA⋆ executes in repeated steps, illustrated in Fig-

ure 2. Each step begins with sortition (§5), where all users

check whether they have been selected as committee mem-

bers in that step. Committee members then broadcast a

message which includes their proof of selection. These steps

repeat until, in some step of BA⋆, enough users in the com-

mittee reach consensus. (Steps are not synchronized across

users; each user checks for selection as soon as he observes

the previous step had ended.) As discussed earlier, an impor-

tant feature of BA⋆ is that committee members do not keep

private state except their private keys, and so can be replaced

after every step, to mitigate targeted attacks on them.

Efficiency. When the network is strongly synchronous,

BA⋆ guarantees that if all honest users start with the same

initial block (i.e., the highest priority block proposer was hon-

est), then BA⋆ establishes final consensus over that block

Figure 2: An overview of one step of BA⋆. To simplify

the figure, each user is shown twice: once at the top of the

diagram and once at the bottom. Each arrow color indicates

a message from a particular user.

and terminates precisely in 4 interactive steps between users.

Under the same network conditions, and in the worst case of

a particularly lucky adversary, all honest users reach consen-

sus on the next block within expected 13 steps, as analyzed

in Appendix C of the technical report [27].

5 CRYPTOGRAPHIC SORTITION

Cryptographic sortition is an algorithm for choosing a ran-

dom subset of users according to per-user weights; that

is, given a set of weights wi and the weight of all users

W =
∑

iwi , the probability that user i is selected is propor-

tional towi/W . The randomness in the sortition algorithm

comes from a publicly known random seed; we describe

later how this seed is chosen. To allow a user to prove that

they were chosen, sortition requires each user i to have a

public/private key pair, (pki ,ski).
Sortition is implemented using verifiable random func-

tions (VRFs) [39]. Informally, on any input string x , VRFsk(x)
returns two values: a hash and a proof. The hash is a hashlen-

bit-long value that is uniquely determined by sk and x , but
is indistinguishable from random to anyone that does not

know sk. The proof π enables anyone that knows pk to check

that the hash indeed corresponds to x , without having to

know sk. For security, we require that the VRF provides

these properties even if pk and sk are chosen by an attacker.

5.1 Selection procedure

Using VRFs, Algorand implements cryptographic sortition

as shown in Algorithm 1. Sortition requires a role parameter

that distinguishes the different roles that a user may be se-

lected for; for example, the user may be selected to propose

a block in some round, or they may be selected to be the

member of the committee at a certain step of BA⋆. Algorand
specifies a threshold τ that determines the expected number

of users selected for that role.

It is important that sortition selects users in proportion to

their weight; otherwise, sortition would not defend against

Sybil attacks. One subtle implication is that users may be

chosen more than once by sortition (e.g., because they have

a high weight). Sortition addresses this by returning the j
parameter, which indicates how many times the user was

5

procedure Sortition(sk, seed,τ , role,w,W):

⟨hash,π ⟩ ← VRFsk(seed| |role)
p← τ

W
j← 0

while
hash

2
hashlen

<
[∑j

k=0B(k ;w,p),
∑j+1

k=0B(k ;w,p)
)
do

j++

return ⟨hash,π , j⟩
Algorithm 1: The cryptographic sortition algorithm.

chosen. Being chosen j times means that the user gets to

participate as j different “sub-users.”
To select users in proportion to their money, we consider

each unit of Algorand as a different “sub-user.” If user i
owns wi (integral) units of Algorand, then simulated user

(i, j) with j ∈ {1, . . . ,wi } represents the jth unit of currency

i owns, and is selected with probability p = τ
W , whereW is

the total amount of currency units in Algorand.

As shown in Algorithm 1, a user performs sortition by

computing ⟨hash,π ⟩ ← VRFsk (seed| |role), where sk is the

user’s secret key. The pseudo-random hash determines

how many sub-users are selected, as follows. The prob-

ability that exactly k out of the w (the user’s weight)

sub-users are selected follows the binomial distribution,

B(k ;w,p)=
(w
k

)
pk (1−p)w−k , where∑w

k=0B(k ;w,p)= 1. Since
B(k1;n1,p) + B(k2;n2,p) = B(k1 + k2;n1 + n2,p), splitting a

user’s weight (currency) among Sybils does not affect the

number of selected sub-users under his/her control.

To determine how many of a user’s w sub-users

are selected, the sortition algorithm divides the inter-

val [0,1) into consecutive intervals of the form I j =[∑j
k=0B(k ;w,p),

∑j+1
k=0B(k ;w,p)

)
for j ∈ {0,1, . . . ,w}. If

hash/2hashlen (where hashlen is the bit-length of hash) falls in

the interval I j , then the user has exactly j selected sub-users.
The number of selected sub-users is publicly verifiable using

the proof π (from the VRF output).

Sortition provides two important properties. First, given a

random seed, the VRF outputs a pseudo-random hash value,

which is essentially uniformly distributed between 0 and

2
hashlen − 1. As a result, users are selected at random based

on their weights. Second, an adversary that does not know

ski cannot guess how many times user i is chosen, or if i was
chosen at all (more precisely, the adversary cannot guess any

better than just by randomly guessing based on the weights).

The pseudocode for verifying a sortition proof, shown in

Algorithm 2, follows the same structure to check if that user

was selected (the weight of the user’s public key is obtained

from the ledger). The function returns the number of selected

sub-users (or zero if the user was not selected at all).

5.2 Choosing the seed

Sortition requires a seed that is chosen at random and pub-

licly known. For Algorand, each round requires a seed that

is publicly known by everyone for that round, but cannot be

controlled by the adversary; otherwise, an adversary may

procedure VerifySort(pk,hash,π , seed,τ , role,w,W):

if ¬VerifyVRF
pk
(hash,π , seed| |role) then return 0;

p← τ
W

j← 0

while
hash

2
hashlen

<
[∑j

k=0B(k ;w,p),
∑j+1

k=0B(k ;w,p)
)
do

j++

return j

Algorithm 2: Pseudocode for verifying sortition of a user

with public key pk.

be able to choose a seed that favors selection of corrupted

users.

In each round of Algorand a new seed is published. The

seed published at Algorand’s round r is determined using

VRFs with the seed of the previous round r −1. More specifi-

cally, during the block proposal stage of round r −1, every
user u selected for block proposal also computes a proposed

seed for round r as ⟨seedr ,π ⟩ ← VRFsku (seedr−1 | |r). Algo-
rand requires that sku be chosen by u well in advance of the

seed for that round being determined (§5.3). This ensures that

even if u is malicious, the resulting seedr is pseudo-random.

This seed (and the corresponding VRF proof π) is included
in every proposed block, so that onceAlgorand reaches agree-

ment on the block for round r −1, everyone knows seedr at
the start of round r . If the block does not contain a valid seed

(e.g., because the block was proposed by a malicious user

and included invalid transactions), users treat the entire pro-

posed block as if it were empty, and use a cryptographic hash

function H (which we assume is a random oracle) to com-

pute the associated seed for round r as seedr = H(seedr−1 | |r).
The value of seed0, which bootstraps seed selection, can be

chosen at random at the start of Algorand by the initial partic-

ipants (after their public keys are declared) using distributed

random number generation [14].

To limit the adversary’s ability to manipulate sortition,

and thus manipulate the selection of users for different com-

mittees, the selection seed (passed to Algorithm 1 and Algo-

rithm 2) is refreshed once every R rounds. Namely, at round r
Algorand calls the sortition functions with seedr−1−(r mod R).

5.3 Choosing sku well in advance of the seed

Computing seedr requires that every user’s secret key sku
is chosen well in advance of the selection seed used in

that round, i.e., seedr−1−(r mod R). When the network is not

strongly synchronous, the attacker has complete control over

the links, and can therefore drop block proposals and force

users to agree on empty blocks, such that future selection

seeds can be computed. To mitigate such attacks Algorand

relies on the weak synchrony assumption (in every period

of length b, there must be a strongly synchronous period of

length s < b). Whenever Algorand performs cryptographic

sortition for round r , it checks the timestamp included in

the agreed-upon block for round r − 1−(r mod R), and uses

the keys (and associated weights) from the last block that

was created b-time before block r −1−(r mod R). The lower

6

bound s on the length of a strongly synchronous period

should allow for sufficiently many blocks to be created in

order to ensure with overwhelming probability that at least

one block was honest. This ensures that, as long as s is suit-
ably large, an adversary u choosing a key sku cannot predict

the seed for round r .

This look-back periodb has the following trade-off: a large
b mitigates the risk that attackers are able break the weak

synchronicity assumption, yet it increases the chance that

users have transferred their currency to someone else and

therefore have nothing to lose if the system’s security breaks.

This is colloquially known as the “nothing at stake” problem;

one possible way to avoid this trade-off, which we do not

explore in Algorand, is to take the minimum of a user’s

current balance and the user’s balance from the look-back

block as the user’s weight.

Appendix A of the technical report [27] formally analyzes

the number of blocks that Algorand needs to be created in the

period s when the network is strongly connected. We show

that to ensure a small probability of failure F , the number of

blocks is logarithmic in
1

F , which allows us to obtain high

security with a reasonably low number of required blocks.

6 BLOCK PROPOSAL

To ensure that some block is proposed in each round, Al-

gorand sets the sortition threshold for the block-proposal

role, τproposer, to be greater than 1 (although Algorand will

reach consensus on at most one of these proposed blocks).

Appendix B of the technical report [27] proves that choosing

τproposer = 26 ensures that a reasonable number of proposers

(at least one, and nomore than 70, as a plausible upper bound)

are chosen with very high probability (e.g., 1−10−11).

Minimizing unnecessary block transmissions. One

risk of choosing several proposers is that each will gossip

their own proposed block. For a large block (say, 1 MByte),

this can incur a significant communication cost. To reduce

this cost, the sortition hash is used to prioritize block propos-

als: For each selected sub-user 1, . . . , j of user i , the priority
for the block proposal is obtained by hashing the (verifiably

random) hash output of VRF concatenated with the sub-user

index. The highest priority of all the block proposer’s se-

lected sub-users is the priority of the block.

Algorand users discard messages about blocks that do not

have the highest priority seen by that user so far. Algorand

also gossips two kinds of messages: one contains just the

priorities and proofs of the chosen block proposers (from

sortition), and the other contains the entire block, which also

includes the proposer’s sortition hash, and proof. The first

kind of message is small (about 200 Bytes), and propagates

quickly through the gossip network. These messages enable

most users to learn who is the highest priority proposer, and

thus quickly discard other proposed blocks.

Waiting for block proposals. Each user must wait a cer-

tain amount of time to receive block proposals via the gossip

protocol. Choosing this time interval does not impact Algo-

rand’s safety guarantees but is important for performance.

Waiting a short amount of time will mean no received pro-

posals. If the user receives no block proposals, he or she

initializes BA⋆with the empty block, and if many users do

so, Algorand will reach consensus on an empty block. On the

other hand, waiting too long will receive all block proposals

but also unnecessarily increase the confirmation latency.

To determine the appropriate amount of time to wait for

block proposals, we consider the plausible scenarios that a

user might find themselves in. When a user starts waiting for

block proposals for round r , theymay be one of the first users

to reach consensus in round r −1. Since that user completed

round r −1, sufficiently many users sent a message for the

last step of BA⋆ in that round, and therefore, most of the

network is at most one step behind this user. Thus, the user

must somehow wait for others to finish the last step of BA⋆
from round r − 1. At this point, some proposer in round r
that happens to have the highest priority will gossip their

priority and proof message, and the user must somehowwait

to receive that message. Then, the user can simply wait until

they receive the block corresponding to the highest priority

proof (with a timeout λblock, on the order of a minute, after

which the user will fall back to the empty block).

It is impossible for a user to wait exactly the correct

amount for the first two steps of the above scenario. Thus,

Algorand estimates these quantities (λstepvar, the variance
in how long it takes different users to finish the last step

of BA⋆, and λpriority, the time taken to gossip the priority

and proof message), and waits for λstepvar + λpriority time

to identify the highest priority. §10 experimentally shows

that these parameters are, conservatively, 5 seconds each.

As mentioned above, Algorand would remain safe even if

these estimates were inaccurate.

Malicious proposers. Even if some block proposers are

malicious, the worst-case scenario is that they trick different

Algorand users into initializing BA⋆ with different blocks.

This could in turn cause Algorand to reach consensus on

an empty block, and possibly take additional steps in doing

so. However, it turns out that even this scenario is relatively

unlikely. In particular, if the adversary is not the highest pri-

ority proposer in a round, then the highest priority proposer

will gossip a consistent version of their block to all users.

If the adversary is the highest priority proposer in a round,

they can propose the empty block, and thus prevent any real

transactions from being confirmed. However, this happens

with probability of at most 1−h, by Algorand’s assumption

that at least h > 2/3 of the weighted user are honest.

7 BA⋆
The execution of BA⋆ consists of two phases. In the first

phase, BA⋆ reduces the problem of agreeing on a block to

agreement on one of two options. In the second phase, BA⋆
reaches agreement on one of these options: either agreeing

on a proposed block, or agreeing on an empty block.

7

Each phase consists of several interactive steps; the first

phase always takes two steps, and the second phase takes

two steps if the highest-priority block proposer was honest

(sent the same block to all users), and as we show in our

analysis an expected 11 steps in the worst case of a malicious

highest-priority proposer colluding with a large fraction of

committee participants at every step.

In each step, every committee member casts a vote for

some value, and all users count the votes. Users that receive

more than a threshold of votes for some value will vote

for that value in the next step (if selected as a committee

member). If the users do not receive enough votes for any

value, they time out, and their choice of vote for the next

step is determined by the step number.

In the common case, when the network is strongly syn-

chronous and the highest-priority block proposer was hon-

est, BA⋆ reaches final consensus by using its final step to

confirm that there cannot be any other agreed-upon block

in the same round. Otherwise, BA⋆ may declare tentative

consensus if it cannot confirm the absence of other blocks

due to possible network asynchrony.

A key aspect of BA⋆’s design is that it keeps no secrets,

except for user private keys. This allows any user observing

the messages to “passively participate” in the protocol: verify

signatures, count votes, and reach the agreement decision.

7.1 Main procedure of BA⋆
The top-level procedure implementing BA⋆, as invoked by

Algorand, is shown in Algorithm 3. The procedure takes a

context ctx, which captures the current state of the ledger, a

round number, and a new proposed block, from the highest-

priority block proposer (§6). Algorand is responsible for

ensuring that the block is valid (by checking the proposed

block’s contents and using an empty block if it is invalid,

as described in §8). The context consists of the seed for

sortition, the user weights, and the last agreed-upon block.

For efficiency, BA⋆ votes for hashes of blocks, instead of

entire block contents. At the end of the BA⋆ algorithm, we

use the BlockOfHash() function to indicate that, if BA⋆ has

not yet received the pre-image of the agreed-upon hash, it

must obtain it from other users (and, since the block was

agreed upon, many of the honest users must have received

it during block proposal).

The BA⋆ algorithm also determines whether it established

final or tentative consensus. We will discuss this check in

detail when we discuss Algorithm 8.

7.2 Voting

Sending votes (Algorithm 4). Algorithm 4 shows the

pseudocode for CommitteeVote(), which checks if the user

is selected for the committee in a given round and step of

BA⋆. The CommitteeVote() procedure invokes Sortition()

from Algorithm 1 to check if the user is chosen to partici-

pate in the committee. If the user is chosen for this step, the

user gossips a signed message containing the value passed to

CommitteeVote(), which is typically the hash of some block.

procedure BA⋆(ctx, round,block):

hblock← Reduction(ctx, round,H (block))
hblock⋆← BinaryBA⋆(ctx, round,hblock)
// Check if we reached “final” or “tentative” consensus

r ← CountVotes(ctx, round,final,Tfinal,τfinal,λstep)
if hblock⋆ = r then

return ⟨final,BlockOfHash(hblock⋆)⟩
else

return ⟨tentative,BlockOfHash(hblock⋆)⟩
Algorithm 3: Running BA⋆ for the next round, with a

proposed block. H is a cryptographic hash function.

procedure CommitteeVote(ctx, round, step,τ ,value):

// check if user is in committee using Sortition (Alg. 1)

role← ⟨“committee”, round, step⟩
⟨sorthash,π , j⟩ ← Sortition(user.sk,ctx.seed,τ , role,

ctx.weight[user.pk],ctx.W)
// only committee members originate a message

if j > 0 then

Gossip(⟨user.pk,Signed
user.sk (round, step,

sorthash,π ,H (ctx.last_block),value)⟩)
Algorithm 4: Voting for value by committee members.

user.sk and user.pk are the user’s private and public keys.

To bind the vote to the context, the signed message includes

the hash of the previous block.

Counting votes (Algorithm 5 and Algorithm 6). The

CountVotes() procedure (Algorithm 5) reads messages that

belong to the current round and step from the incomingMsgs

buffer. (For simplicity, our pseudocode assumes that a back-

ground procedure takes incoming votes and stores them into

that buffer, indexed by the messages’ round and step.) It pro-

cesses the votes by calling the ProcessMsg() procedure for

every message (Algorithm 6), which ensures that the vote is

valid. Note that no private state is required to process these

messages.

ProcessMsg() returns not just the value contained in the

message, but also the number of votes associated with that

value. If the message was not from a chosen committee

member, ProcessMsg() returns zero votes. If the committee

member was chosen several times (see §5), the number of

votes returned by ProcessMsg() reflects that as well. Pro-

cessMsg() also returns the sortition hash, which we will use

later in Algorithm 9.

As soon as one value has more than T · τ votes,

CountVotes() returns that value. τ is the expected num-

ber of users that Sortition() selects for the committee, and is

the same for each step (τstep) with the exception of the final

step (τfinal). T is a fraction of that expected committee size

(T > 2

3
) that defines BA⋆’s voting threshold; this is also the

same for every step except the final step, and we analyze it in

§7.5. If not enough messages were received within the allo-

cated λ time window, then CountVotes() produces timeout.

8

procedure CountVotes(ctx, round, step,T ,τ ,λ):

start← Time()
counts← {} // hash table, new keys mapped to 0

voters← {}
msgs← incomingMsgs[round, step].iterator()
while True do

m←msgs.next()
if m = ⊥ then

if Time() > start + λ then return timeout;

else

⟨votes,value, sorthash⟩ ← ProcessMsg(ctx,τ ,m)
if pk ∈ voters or votes = 0 then continue;

voters ∪ = {pk}
counts[value] + = votes
// if we got enough votes, then output this value

if counts[value] > T ·τ then

return value

Algorithm 5: Counting votes for round and step.

procedure ProcessMsg(ctx,τ ,m):

⟨pk, signed_m⟩ ←m
if VerifySignature(pk, signed_m) , OK then

return ⟨0,⊥,⊥⟩
⟨round, step, sorthash,π ,hprev,value⟩ ← signed_m

// discard messages that do not extend this chain

if hprev , H (ctx.last_block) then return ⟨0,⊥,⊥⟩;
votes← VerifySort(pk, sorthash,π ,ctx.seed,τ ,

⟨“committee”, round, step⟩,ctx.weight[pk],ctx.W)
return ⟨votes,value, sorthash⟩
Algorithm 6: Validating incoming vote messagem.

The threshold ensures that if one honest user’s CountVotes()

returns a particular value, then all other honest users will

return either the same value or timeout, even under the

weak synchrony assumption (see Lemma 1 in Appendix C.2

of the technical report [27]).

7.3 Reduction

The Reduction() procedure, shown in Algorithm 7, converts

the problem of reaching consensus on an arbitrary value

(the hash of a block) to reaching consensus on one of two

values: either a specific proposed block hash, or the hash

of an empty block. Our reduction is inspired by Turpin and

Coan’s two-step technique [51]. This reduction is important

to ensure liveness.

In the first step of the reduction, each committee member

votes for the hash of the block passed to Reduction() by

BA⋆(). In the second step, committee members vote for

the hash that received at least T · τ votes in the first step,

or the hash of the default empty block if no hash received

enough votes. Reduction() ensures that there is at most one

non-empty block that can be returned by Reduction() for all

honest users.

procedure Reduction(ctx, round,hblock):

// step 1: gossip the block hash

CommitteeVote(ctx, round,reduction_one,
τstep,hblock)

// other users might still be waiting for block proposals,

// so set timeout for λblock+ λstep
hblock1← CountVotes(ctx, round,reduction_one,

Tstep,τstep,λblock+λstep)
// step 2: re-gossip the popular block hash

empty_hash← H (Empty(round,H (ctx.last_block)))
if hblock1 = timeout then

CommitteeVote(ctx, round, reduction_two,

τstep, empty_hash)

else

CommitteeVote(ctx, round, reduction_two,

τstep, hblock1)

hblock2← CountVotes(ctx, round,reduction_two,
Tstep,τstep,λstep)

if hblock2 = timeout then return empty_hash ;

else return hblock2 ;

Algorithm 7: The two-step reduction.

In the common case when the network is strongly syn-

chronous and the highest-priority block proposer was hon-

est, most (e.g., 95%) of the users will call Reduction() with

the same hblock parameter, and Reduction() will return that

same hblock result to most users as well.

On the other hand, if the highest-priority block proposer

was dishonest, different users may start Reduction() with

different hblock parameters. In this case, no single hblock

value may be popular enough to cross the threshold of votes.

As a result, Reduction() will return empty_hash.

7.4 Binary agreement

Algorithm 8 shows BinaryBA⋆(), which reaches consensus

on one of two values: either the hash passed to BinaryBA⋆()
or the hash of the empty block. BinaryBA⋆() relies on Re-

duction() to ensure that at most one non-empty block hash

is passed to BinaryBA⋆() by all honest users.

Safety with strong synchrony. In each step of

BinaryBA⋆(), a user who has seen more than T · τ
votes for some value will vote for that same value in the

next step (if selected). However, if no value receives enough

votes, BinaryBA⋆() chooses the next vote in a way that

ensures consensus in a strongly synchronous network.

Specifically, user Amay receive votes from an adversary

that push the votes observed by A past the threshold, but

the adversary might not send the same votes to other users

(or might not send them in time). As a result, A returns

consensus on a block, but other users timed out in that step.

It is crucial that BinaryBA⋆() chooses the votes for the next
step in a way that will match the block already returned by

A. Algorithm 8 follows this rule: every return statement

9

procedure BinaryBA⋆(ctx, round,block_hash):

step← 1

r ← block_hash

empty_hash← H (Empty(round,H (ctx.last_block)))
while step < MaxSteps do

CommitteeVote(ctx, round, step, τstep, r)
r ← CountVotes(ctx, round, step,Tstep,τstep,λstep)
if r = timeout then

r ← block_hash

else if r , empty_hash then

for step < s ′ ≤ step+3 do
CommitteeVote(ctx, round, s ′, τstep, r)

if step = 1 then

CommitteeVote(ctx, round, final, τfinal, r)
return r

step++

CommitteeVote(ctx, round, step, τstep, r)
r ← CountVotes(ctx, round, step,Tstep,τstep,λstep)
if r = timeout then

r ← empty_hash

else if r = empty_hash then

for step < s ′ ≤ step+3 do
CommitteeVote(ctx, round, s ′, τstep, r)

return r

step++

CommitteeVote(ctx, round, step, τstep, r)
r ← CountVotes(ctx, round, step,Tstep,τstep,λstep)
if r = timeout then

if CommonCoin(ctx, round, step,τstep) = 0 then
r ← block_hash

else

r ← empty_hash

step++

// No consensus after MaxSteps; assume network

// problem, and rely on §8.2 to recover liveness.

HangForever()

Algorithm 8: BinaryBA⋆ executes until consensus is

reached on either block_hash or empty_hash.

is coupled with a check for timeout that sets the next-step

vote to the same value that could have been returned.

It is also crucial that BinaryBA⋆() is able to collect enough
votes in the next step to carry forward the value that A
already reached consensus on. If there are many users like

A that have already returned consensus, BinaryBA⋆() may

not have enough users to push CountVotes() in the next step

past the threshold. To avoid this problem, whenever a user

returns consensus, that user votes in the next three steps

with the value they reached consensus on.

In the common case, when the network is strongly syn-

chronous and the block proposer was honest, BinaryBA⋆()
will start with the same block_hash for most users, and will

reach consensus in the first step, since most committee mem-

bers vote for the same block_hash value.

Safety with weak synchrony. If the network is not

strongly synchronous (e.g., there is a partition), BinaryBA⋆()
may return consensus on two different blocks. For example,

suppose that, in the first step of BinaryBA⋆(), all users vote
for block_hash, but only one honest user, A, receives those
votes. In this case, A will return consensus on block_hash,

but all other users will move on to the next step. Now, the

other users vote for block_hash again, because CountVotes()

returned timeout. However, let’s assume the network drops

all of these votes. Finally, the users vote for empty_hash

in the third step, the network becomes well behaved, and

all votes are delivered. As a result, the users will keep vot-

ing for empty_hash until the next iteration of the loop, at

which point they reach consensus on empty_hash. This is

undesirable because BinaryBA⋆() returned consensus on two
different hashes to different honest users.

BA⋆() addresses this problem by introducing the notion

of final and tentative consensus. Final consensus means that

BA⋆() will not reach consensus on any other block for that

round. Tentative consensus means that BA⋆() was unable to
guarantee safety, either because of network asynchrony or

due to a malicious block proposer.

BA⋆() designates consensus on value V as “final” if

BinaryBA⋆() reached consensus on V in the very first step,

and if enough users observed this consensus being reached.

Specifically, BinaryBA⋆() sends out a vote for the special

final step to indicate that a user reached consensus on some

value in the very first step, and BA⋆() collects these votes
to determine whether final consensus was achieved. In a

strongly synchronous network with an honest block pro-

poser, BinaryBA⋆() will reach consensus in the first step,

most committee members will vote for the consensus block

in the special final step in BinaryBA⋆(), and will receive

more than a threshold of such votes in BA⋆(), thus declaring
the block as final. The final step is analogous to the final

confirmation step implemented in many Byzantine-resilient

protocols [15, 35].

Intuitively, this guarantees safety because a large thresh-

old of users have already declared consensus for V , and will

not vote for any other value in the same round. In our ex-

ample above, where user A reached consensus on a different

block than all other users, neither block would be designated

as final, because only one user (namely, A) observed consen-

sus at the first step, and there would never be enough votes

to mark that block as final. Appendix C.1 of the technical

report [27] formalizes and proves this safety property.

One subtle issue arises due to the fact that BA⋆ relies on

a committee to declare final consensus, instead of relying on

all participants. As a result, even if one user observes final

consensus, an adversary that controls the network may be

able to prevent a small fraction of other users from reaching

any kind of consensus (final or tentative) for an arbitrary

number of steps. Each of these steps give the adversary

an additional small probability of reaching consensus on a

different value (e.g., the empty block). To bound the total

10

procedure CommonCoin(ctx, round, step, τ):
minhash← 2

hashlen

form ∈ incomingMsgs[round, step] do
⟨votes,value, sorthash⟩ ← ProcessMsg(ctx,τ ,m)
for 1 ≤ j < votes do

h← H (sorthash| |j)
if h < minhash then minhash← h;

return minhash mod 2

Algorithm 9: Computing a coin common to all users.

probability of an adversary doing so, BA⋆ limits the total

number of allowed steps; Appendix C.1 of the technical

report [27] relies on this. If the protocol runs for more than

MaxSteps steps, BA⋆ halts without consensus and relies on

the recovery protocol described in §8.2 to recover liveness.

Getting unstuck. One remaining issue is that consensus

could get stuck if the honest users are split into two groups,

A and B, and the users in the two groups vote for different

values (say, we are in step 1, A votes for empty_hash, and

B votes for block_hash). Neither group is large enough to

gather enough votes on their own, but together with the

adversary’s votes, group A is large enough. In this situation,

the adversary can determine what every user will vote for in

the next step. To make some user vote for empty_hash in the

next step, the adversary sends that user the adversary’s own

votes for empty_hash just before the timeout expires, which,

together with A’s votes, crosses the threshold. To make the

user vote for block_hash, the adversary does not send any

votes to that user; as a result, that user’s CountVotes() will

return timeout, and the user will choose block_hash for the

next step’s vote, according to the BinaryBA⋆() algorithm.

This way, the adversary can split the users into two groups

in the next step as well, and continue this attack indefinitely.

The attack described above requires the adversary to

know how a user will vote after receiving timeout from

CountVotes(). The third step of BinaryBA⋆() is designed
to avoid this attack by pushing towards accepting either

block_hash or empty_hash based on a random “common coin,”

meaning a binary value that is predominantly the same for

all users. Although this may sound circular, the users need

not reach formal consensus on this common coin. As long as

enough users observe the same coin bit, and the bit was not

known to the attacker in advance of the step, BinaryBA⋆()
will reach consensus in the next iteration of the loop with

probability 1/2 (i.e., the probability that the attacker guessed
wrong). By repeating these steps, the probability of consen-

sus quickly approaches 1.

To implement this coin we take advantage of the VRF-

based committee member hashes attached to all of the mes-

sages. Every user sets the common coin to be the least-

significant bit of the lowest hash it observed in this step,

as shown in Algorithm 9. If a user gets multiple votes (i.e.,

several of their sub-users were selected), then Common-

Coin() considers multiple hashes from that user, by hashing

that user’s sortition hash with the sub-user index. Notice

that hashes are random (since they are produced by hashing

the pseudo-random VRF output), so their least-significant

bits are also random. The common coin is used only when

CountVotes() times out, giving sufficient time for all votes to

propagate through the network. If the committee member

with the lowest hash is honest, then all users that received

his message observe the same coin.

If a malicious committee-member happens to hold the

lowest hash, then he might send it to only some users. This

may result in users observing different coin values, and thus

will not help in reaching consensus. However, since sortition

hashes are pseudo-random, the probability that an honest

user has the lowest hash is h (the fraction of money held by

honest users), and thus there is at least an h > 2

3
probability

that the lowest sortition hash holder will be honest, which

leads to consensus with probability
1

2
·h > 1

3
at each loop iter-

ation. This allows Appendix C.3 of the technical report [27]

to show that, with strong synchrony, BA⋆ does not exceed
MaxSteps with overwhelming probability.

7.5 Committee size

The fraction h > 2

3
of weighted honest users in Algorand

must translate into a “sufficiently honest” committee for

BA⋆. BA⋆ has two parameters at its disposal: τ , which con-

trols the expected committee size, and T , which controls the

number of votes needed to reach consensus (T ·τ). We would

like T to be as small as possible for liveness, but the smaller

T is, the larger τ needs to be, to ensure that an adversary

does not obtain enough votes by chance. Since a larger com-

mittee translates into a higher bandwidth cost, we choose

two different parameter sets: Tfinal and τfinal for the final
step, which ensures an overwhelming probability of safety

regardless of strong synchrony, and Tstep and τstep for all
other steps, which achieve a reasonable trade-off between

liveness, safety, and performance.

To make the constraints on τstep and Tstep precise, let us
denote the number of honest committee members by д and

the malicious ones by b; in expectation, b+д = τstep, but b+д
can vary since it is chosen by sortition. To ensure liveness,

as we prove in Appendix C.2 of the technical report [27],

BA⋆ requires
1

2
д+b ≤ Tstep ·τstep and д > Tstep ·τstep.

Due to the probabilistic nature of how committeemembers

are chosen, there is always some small chance that theb andд
for some step fail to satisfy the above constraints, and BA⋆’s
goal is to make this probability negligible. Figure 3 plots the

expected committee size τstep that is needed to satisfy both

constraints, as a function of h, for a probability of violation

of 5×10−9; Appendix B of the technical report [27] describes

this computation in more detail. The figure shows a trade-off:

the weaker the assumption on the fraction of money held by

honest users (h), the larger the committee size needs to be.

The results show that, as h approaches
2

3
, the committee size

grows quickly. However, at h = 80%, τstep = 2,000 can ensure

that these constraints holdwith probability 1−5×10−9 (using
Tstep = 0.685).

11

76 78 80 82 84 86 88 90
% of Honest Users

0

500

1000

1500

2000

2500

3000

3500

4000

4500
C

om
m

itt
ee

 S
iz

e
5·10^-9

Figure 3: The committee size, τ , sufficient to limit the proba-

bility of violating safety to 5×10−9. The x-axis specifiesh, the
weighted fraction of honest users. ⋆marks the parameters

selected in our implementation.

The constraints on τfinal and Tfinal are dictated by the

proof of safety under weak synchrony; Appendix C.1 of the

technical report [27] shows that τfinal = 10,000 suffices with

Tfinal = 0.74.
With these parameters, BA⋆ ensures safety even if the

lowest-priority block proposer is malicious (proposes differ-

ent blocks). Appendix C of the technical report [27] provides

proofs of BA⋆’s safety under weak synchrony (§C.1), liveness
under strong synchrony (§C.2), and efficiency (§C.3).

8 ALGORAND

Building Algorand on top of the primitives we have described

so far requires Algorand to address a number of higher-level

issues, which this section discusses.

8.1 Block format

Algorand’s blocks consist of a list of transactions, along

with metadata needed by BA⋆. Specifically, the metadata

consists of the round number, the proposer’s VRF-based

seed (§6), a hash of the previous block in the ledger, and a

timestamp indicating when the block was proposed. The

list of transactions in a block logically translates to a set

of weights for each user’s public key (based on the balance

of currency for that key), along with the total weight of all

outstanding currency.

Once a user receives a block from the highest-priority pro-

poser, the user validates the block contents before passing it

on to BA⋆. In particular, the user checks that all transactions

are valid; that the seed is valid; that the previous block hash

is correct; that the block round number is correct; and that

the timestamp is greater than that of the previous block and

also approximately current (say, within an hour). If any of

them are incorrect, the user passes an empty block to BA⋆.

8.2 Safety and liveness

To a large extent, Algorand relies on BA⋆ to reach consensus

on blocks in the ledger. Algorand confirms transactions only

when they appear in a final block, or in the predecessor of a

final block. Final blocks guarantee that no other block could

have reached consensus in the same round. This means

that all final blocks are totally ordered with respect to one

another, since (1) blocks form a linear chain, and (2) there can

be exactly one final block at any given position in the chain.

In other words, given two final blocks, one of them (the one

with the smaller round number r1) must be a predecessor of

the other (the one with the higher round number r2), since
there must be some predecessor of the r2 block in round r1,
and the safety condition guarantees that the r1 block is the

only possible such block.

The remaining issue is that, if the network is not strongly

synchronous, BA⋆may create forks (i.e., different users reach

consensus on different blocks). This does not violate safety,

because BA⋆will return tentative consensus in this situation.

However, forks do impact liveness: users on different forks

will have different ctx.last_block values, which means they

will not count each others’ votes. As a result, at least one of

the forks (and possibly all of the forks) will not have enough

participants to cross the vote threshold, and BA⋆will not be

able to reach consensus on any more blocks on that fork.

To resolve these forks, Algorand periodically proposes a

fork that all users should agree on, and uses BA⋆ to reach

consensus on whether all users should, indeed, switch to

this fork. To determine the set of possible forks, Algorand

users passively monitor all BA⋆ votes (i.e., even votes whose

prev_hash value does not match the current user’s chain),

and keep track of all forks. Users then use loosely synchro-

nized clocks to stop regular block processing and kick off the

recovery protocol at every time interval (e.g., every hour),

which will propose one of these forks as the fork that every-

one should agree on.

The recovery protocol starts by having users propose a

fork using the block proposal mechanism (§6). Specifically,

if a user is chosen to be a “fork proposer,” that user proposes

an empty block whose predecessor hash is the longest fork

(by the number of blocks) observed by the user so far. Each

user waits for the highest-priority fork proposal, much as

in the block proposal mechanism. Each user validates the

proposed block, by ensuring that the block’s parent pointer

is a chain that is as long as the longest chain seen by that

user. Choosing the longest fork ensures that this fork will

include all final blocks. Finally, the user invokes BA⋆ to

reach consensus on this block, passing the round number

found in the proposed block.

In order for BA⋆ to reach consensus on one of the forks,

all Algorand users must use the same seed and user weights.

This means that Algorand must use user weights and seeds

from before any possible forks occurred. To do this, Algorand

relies on the weak synchrony assumption—namely, that in

every period of length b (think of b as 1 day), there must

be a strongly synchronous period of length s < b (think of

s as a few hours). Under this assumption, using the block

timestamps, Algorand quantizes time into b-long periods

(think days), and finds the most recent block from the next-

to-last complete b-long period. Algorand then uses the seed

12

from this block, and uses user weights from the last block

that was agreed upon at least b-long time before it (§5.3).

Algorand takes the seed from the block from the next-

to-last b-long period because the most recent b-long period

may still have an unresolved fork. Such a fork would prevent

users from agreeing on the seed and weights used in the

recovery. However, as long as Algorand can recover within

the s-long strongly synchronous period in the most recent

b-long period, all users will agree on the same block from

the next-to-last period (as long as their clocks are roughly

synchronized).

To ensure that Algorand recovers from a fork (i.e., most

honest users switch to the same fork) within the s-long syn-

chronous period, Algorand users repeatedly attempt to reach

consensus on a fork (applying a hash function to the seed

each time to produce a different set of proposers and com-

mittee members), until they achieve consensus. Since, by

assumption, Algorand is operating in a strongly synchronous

period, it is not important whether BA⋆ returns “final” or

“tentative” consensus in this case. When Algorand is recov-

ering outside of a strongly synchronous period, we cannot

ensure recovery within s time.

8.3 Bootstrapping

Bootstrapping the system. To deploy Algorand, a com-

mon genesis block must be provided to all users, along with

the initial cryptographic sortition seed. The value of seed0

specified in the genesis block is decided using distributed

random number generation [14], after the public keys and

weights for the initial set of participants are publicly known.

Bootstrapping newusers. Users that join the system need

to learn the current state of the system, which is defined to

be the result of a chain of BA⋆ consensus outcomes. To

help users catch up, Algorand generates a certificate for ev-

ery block that was agreed upon by BA⋆ (including empty

blocks). The certificate is an aggregate of the votes from the

last step of BinaryBA⋆() (not including the final step) that
would be sufficient to allow any user to reach the same con-

clusion by processing these votes (i.e., there must be at least

⌊Tstep ·τstep⌋ + 1 votes). Importantly, the users must check

the sortition hashes and proofs just like in Algorithm 6, and

that all messages in the certificate are for the same Algorand

round and BA⋆ step.

Certificates allow new users to validate prior blocks. Users

validate blocks in order, starting from the genesis block. This

ensures that the user knows the correct weights for verifying

sortition proofs in any given round. Users can also request

a certificate proving the safety of a block; this is simply the

collection of votes for the final step. Since final blocks are

totally ordered, users need to check the safety of only the

most recent block.

One potential risk created by the use of certificates is that

an adversary can provide a certificate that appears to show

that BA⋆ completed after some large number of steps. This

gives the adversary a chance to find a BA⋆ step number

(up to MaxSteps) in which the adversary controls more

than a threshold of the selected committee members (and

to then create a signed certificate using their private keys).

We set the committee size to be sufficiently large to ensure

the attacker has negligible probability of finding such a step

number. For τstep > 1,000, the probability of this attack is

less than 2
−166

at every step, making this attack infeasible.

Storage. The block history and matching certificates allow

new users to catch-up, and are not required for users who

are already up-to-date with the current ledger. Therefore Al-

gorand distributes certificate and block storage across users.

For N shards, users store blocks/certificates whose round

number equals their public key modulo N.

8.4 Communication

Gossiping blocks and relaying messages. Algorand’s

block proposal protocol (§6) assumed that chosen users can

gossip new blocks before an adversary can learn the user’s

identity and mount a targeted DoS attack against them. In

practice, Algorand’s blocks are larger than the maximum

packet size, so it is inevitable that some packets from a cho-

sen block proposer will be sent before others. A particularly

fast adversary could take advantage of this to immediately

DoS any user that starts sending multiple packets, on the

presumption that the user is a block proposer.

Formally, this means that Algorand’s liveness guarantees

are slightly different in practice: instead of providing liveness

in the face of immediate targeted DoS attacks, Algorand

ensures liveness as long as an adversary cannot mount a

targeted DoS attack within the time it takes for the victim

to send a block over a TCP connection (a few seconds). We

believe this does not matter significantly; an adversary with

such a quick reaction time likely also has broad control over

the network, and thus can prevent Algorand nodes from

communicating at all. Another approach may be to rely

on Tor [19] to make it difficult for an adversary to quickly

disconnect a user.

To avoid an adversary from sending garbage messages and

overwhelming Algorand’s gossip network, Algorand nodes

must validate messages before relaying them. Specifically,

Algorand nodes should validate each message using Algo-

rithm 6, and avoid relaying more than one message signed

by a given public key per ⟨round, step⟩.

Scalability. The communication costs for each user depend

on the expected size of the committee and the number of

block proposers, which Algorand sets through τproposer, τstep,
and τfinal (independent of the number of users). As more

users join, it takes a message longer to disseminate in the

gossip network. Algorand’s gossip network forms a random

network graph (each user connects to random peers). Our

theoretical analysis suggests that almost all users will be

part of one connected component in the graph, and that dis-

semination time grows with the diameter of that component,

which is logarithmic in the number of users [45]. Experi-

13

ments confirm that Algorand’s performance is only slightly

affected by more users (§10).

Since our random graph uses a fixed number of peers,

one potential concern is that it may contain disconnected

components [22]. However, only a small fraction of users

might end up in a disconnected component, which does

not pose a problem for BA⋆. Moreover, Algorand replaces

gossip peers each round, which helps users recover from

being possibly disconnected in a previous round.

9 IMPLEMENTATION

We implemented a prototype of Algorand in C++, consist-

ing of approximately 5,000 lines of code. We use the Boost

ASIO library for networking. Signatures and VRFs are im-

plemented over Curve 25519 [6], and we use SHA-256 for

a hash function. We use the VRF outlined in Goldberg et

al [28: §4].

In our implementation each user connects to 4 random

peers, accepts incoming connections from other peers, and

gossips messages to all of them. This gives us 8 peers on

average. We currently provide each user with an “address

book” file listing the IP address and port number for every

user’s public key. In a real-world deployment we imagine

users could gossip this information, signed by their keys, or

distribute it via a public bulletin board. This naïve design of

the gossip protocol in our prototype implementation is po-

tentially susceptible to Sybil attacks, since it does not prevent

an adversary from joining the gossip network with a large

number of identities. We leave the problem of implementing

a Sybil-resistant gossip network to future work.

One difference between our implementation and the pseu-

docode shown in §7 lies in the BinaryBA⋆() function. The
pseudocode in Algorithm 8 votes in the next 3 steps after

reaching consensus. For efficiency, our implementation in-

stead looks back to the previous 3 steps before possibly re-

turning consensus in a future step. This logic produces equiv-

alent results but is more difficult to express in pseudocode.

Figure 4 shows the parameters in our prototype of Algo-

rand; we experimentally validate the timeout parameters in

§10. h = 80% means that an adversary would need to control

20% of Algorand’s currency in order to create a fork. By

analogy, in the US, the top 0.1% of people own about 20% of

the wealth [41], so the richest 300,000 people would have to

collude to create a fork.

λpriority should be large enough to allow block proposers

to gossip their priorities and proofs. Measurements of mes-

sage propagation in Bitcoin’s network [18] suggest that gos-

siping 1 KB to 90% of the Bitcoin peer-to-peer network takes

about 1 second. We conservatively set λpriority to 5 seconds.

λblock ensures that Algorand can make progress even if

the block proposer does not send the block. Our experiments

(§10) show that about 10 seconds suffices to gossip a 1 MB

block. We conservatively set λblock to be a minute.

λstep should be high enough to allow users to receive

messages from committee members, but low enough to allow

Parameter Meaning Value

h assumed fraction of honest weighted users 80%

R seed refresh interval (# of rounds) 1,000 (§5.2)

τproposer expected # of block proposers 26 (§B.1)

τstep expected # of committee members 2,000 (§B.2)

Tstep threshold of τstep for BA⋆ 68.5% (§B.2)

τfinal expected # of final committee members 10,000 (§C.1)

Tfinal threshold of τfinal for BA⋆ 74% (§C.1)

MaxSteps maximum number of steps in BinaryBA⋆ 150 (§C.1)

λpriority time to gossip sortition proofs 5 seconds

λblock timeout for receiving a block 1 minute

λstep timeout for BA⋆ step 20 seconds

λstepvar estimate of BA⋆ completion time variance 5 seconds

Figure 4: Implementation parameters.

Algorand to make progress (move to the next step) if it does

not hear from sufficiently many committee members. We

conservatively set λstep to 20 seconds. We set λstepvar, the
estimated variance in BA⋆ completion times, to 10 seconds.

10 EVALUATION

Our evaluation quantitatively answers the following:

• What is the latency that Algorand can achieve for con-

firming transactions, and how does it scale as the number

of users grows? (§10.1)

• What throughput can Algorand achieve in terms of trans-

actions per second? (§10.2)

• What are Algorand’s CPU, bandwidth, and storage costs?

(§10.3)

• How does Algorand perform when users misbehave?

(§10.4)

• Does Algorand choose reasonable timeout parameters?

(§10.5)

To answer these questions, we deploy our prototype of

Algorand on Amazon’s EC2 using 1,000 m4.2xlarge virtual

machines (VMs), each of which has 8 cores and up to 1 Gbps

network throughput. To measure the performance of Algo-

rand with a large number of users, we run multiple Algorand

users (each user is a process) on the same VM. By default, we

run 50 users per VM, and users propose a 1 MByte block. To

simulate commodity network links, we cap the bandwidth

for each Algorand process to 20 Mbps. To model network la-

tency we use inter-city latency and jitter measurements [53]

and assign each machine to one of 20 major cities around the

world; latency within the same city is modeled as negligible.

We assign an equal share of money to each user; the equal

distribution of money maximizes the number of messages

that users need to process. Graphs in the rest of this section

plot the time it takes for Algorand to complete an entire

round, and include the minimum, median, maximum, 25th,

and 75th percentile times across all users.

10.1 Latency

Figure 5 shows results with the number of users varying from

5,000 to 50,000 (by varying the number of active VMs from

100 to 1,000). The results show that Algorand can confirm

14

5K 7K 10
K

15
K

25
K

50
K

Number of Users

0

5

10

15

20

25
T

im
e

(s
)

Round Completion

Figure 5: Latency for one round of Algorand, with 5,000 to

50,000 users.

50
K
75

K
10

0K
15

0K
25

0K
50

0K

Number of Users

0

20

40

60

80

100

120

T
im

e
(s

)

Round Completion

Figure 6: Latency for one round of Algorand in a configura-

tion with 500 users per VM, using 100 to 1,000 VMs.

transactions in well under a minute, and the latency is near-

constant as the number of users grows. (Since τfinal = 10,000,
the time it takes to complete the final step increases until

there are 10,000 users in the system; before this point, users

are selectedmore than once and send fewer votes with higher

weights.)

To determine if Algorand continues to scale to even more

users, we run an experiment with 500 Algorand user pro-

cesses per VM. This configuration runs into two bottlenecks:

CPU time and bandwidth. Most of the CPU time is spent

verifying signatures and VRFs. To alleviate this bottleneck

in our experimental setup, for this experiment we replace

verifications with sleeps of the same duration. We are un-

able to alleviate the bandwidth bottleneck, since each VM’s

network interface is maxed out; instead, we increase λstep
to 1 minute.

Figure 6 shows the results of this experiment, scaling the

number of users from 50,000 to 500,000 (by varying the num-

ber of VMs from 100 to 1,000). The latency in this experiment

is about 4× higher than in Figure 5, even for the same num-

ber of users, owing to the bandwidth bottleneck. However,

the scaling performance remains roughly flat all the way to

500,000 users, suggesting that Algorand scales well.

51
2K

B
1M

B
2M

B
4M

B
8M

B
10

M
B

Block Size

0

10

20

30

40

50

60

T
im

e
(s

)

BA* Final Step
BA* w/o Final Step
Block Proposal

Figure 7: Latency for one round of Algorand as a function

of the block size.

10.2 Throughput

In the following set of experiments we deploy 50,000 users

on our 1,000 VMs (50 users per machine). Figure 7 shows

the results with a varying block size. The figure breaks the

Algorand round into three parts. Block proposal (§6), at the

bottom of the graph, is the time it takes a user to obtain the

proposed block. The block proposal time for small block

sizes is dominated by the λpriority +λstepvar wait time. For

large block sizes, the time to gossip the large block contents

dominates. BA⋆ except for the final step, in the middle of

the graph, is the time it takes for BA⋆ to reach the final step.
Finally, BA⋆’s final step, at the top of the graph, is the time

it takes BA⋆ to complete the final step. We break out the

final step separately because, for the purposes of through-

put, it could be pipelined with the next round (although our

prototype does not do so).

The results show that Algorand’s agreement time (i.e.,

BA⋆) is independent of the block size, and stays about the

same (12 seconds) even for large blocks. The throughput

can be further increased by pipelining the final step, which

takes about 6 seconds, with the next round of Algorand. The

fixed time for running BA⋆ and the linear growth in block

propagation time (with the size of the block) suggest that

increasing the block size allows one to amortize the time it

takes to run BA⋆ to commit more data, and therefore reach

a throughput that maximizes the network capability.

At its lowest latency, Algorand commits a 2 MByte block

in about 22 seconds, which means it can commit 327 MBytes

of transactions per hour. For comparison, Bitcoin commits a

1 MByte block every 10 minutes, which means it can com-

mit 6 MBytes of transactions per hour [9]. As Algorand’s

block size grows, Algorand achieves higher throughput at

the cost of some increase to latency. For example, with a

10 MByte block size, Algorand commits about 750 MBytes of

transactions per hour, which is 125× Bitcoin’s throughput.

10.3 Costs of running Algorand

Users running Algorand incur CPU, network, and storage

costs. The CPU cost of running Algorand is modest; when

running 50 users per VM, CPU usage on the 8-core VM was

about 40% (most of it for verifying signatures and VRFs),

15

0 5 10 15 20
% Malicious Users

0

5

10

15

20

25

T
im

e
(s

)

Round Completion

Figure 8: Latency for one round of Algorand with a varying

fraction of malicious users, out of a total of 50,000 users.

meaning each Algorand process uses about 6.5% of a core.

In terms of bandwidth, each user in our experiment with

1 MByte blocks and 50,000 users uses about 10 Mbit/sec (em-

pirically computed as the total amount of data sent, divided

by the duration of the experiment). We note that the com-

munication cost per user is independent of the number of

users running Algorand, since users have an expected fixed

number of neighbors they gossip messages to, and the num-

ber of messages in the consensus protocol depends on the

committee size (rather than the total number of users).

In terms of storage cost, Algorand stores block certificates

in order to prove to new users that a block was committed.

This storage cost is in addition to the blocks themselves. Each

block certificate is 300 KBytes, independent of the block size;

for 1 MByte blocks, this would be a ∼30% storage overhead.

Sharding block storage across users (§8.3) reduces storage

costs proportionally. For example, shardingmodulo 10would

require each user to store, on average, 130 KB for every 1MB

block that is appended to the ledger.

10.4 Misbehaving users

Algorand’s safety is guaranteed by BA⋆ (§7), but proving this
experimentally would require testing all possible attacker

strategies, which is infeasible. However, to experimentally

show that our Algorand prototype handles malicious users,

we choose one particular attack strategy. We force the block

proposer with the highest priority to equivocate about the

proposed block: namely, the proposer sends one version of

the block to half of its peers, and another version to others

(note that as an optimization, if a user receives to conflicting

versions of a block from the highest priority block proposer

before the block proposal step is complete, he discards both

proposals and starts BA⋆with the empty block). Malicious

users that are chosen to be part of the BA⋆ committee vote

for both blocks. Figure 8 shows howAlgorand’s performance

is affected by the weighted fraction of malicious users. The

results show that, at least empirically for this particular at-

tack, Algorand is not significantly affected.

10.5 Timeout parameters

The above results confirm that BA⋆ steps finish in well un-

der λstep (20 seconds), that the difference between 25th and

75th percentiles of BA⋆ completion times is under λstepvar
(5 seconds), and that blocks are gossiped within λblock (1

minute). We separately measure the time taken to propa-

gate a block proposer’s priority and proof; it is consistently

around 1 second, well under λpriority (5 seconds), confirming

the measurements by Decker and Wattenhofer [18].

11 FUTUREWORK

This paper focused on the consensus mechanism for commit-

ting transactions, and addressing the associated scalability

and security challenges. There remain a number of open

problems in designing permissionless cryptocurrencies:

Incentives. In order to encourage Algorand users to par-

ticipate, i.e., be online when selected and pay the network

cost of operating Algorand, the system may need to include

incentives, possibly in form of a reward mechanism. Design-

ing and analyzing an incentive mechanism includes many

challenges, such as ensuring that users do not have perverse

incentives (e.g., to withhold votes), and that malicious users

cannot “game the system” to obtain more rewards than users

who follow the protocol (e.g., by influencing seed selection).

Cost of joining. To join Algorand, new users fetch all ex-

isting blocks with their accompanying certificates, which

can comprise a large amount of data. Other cryptocurrencies

face a similar problem, but since the throughput of Algorand

is relatively high, this may create a scalability challenge.

Forward security. Attackers may attempt to corrupt users

over time, since identities of committee members are re-

vealed after they send a message. If an attacker manages to

obtain enough user keys, he could construct a fake certificate

to create a fork. One solution would be for users to forget

the signing key before sending out a signed message (and

commit to a series of signing keys ahead of time, perhaps

using identity-based encryption [11, 20]).

12 CONCLUSION

Algorand is a new cryptocurrency that confirms transactions

on the order of a minute with a negligible probability of fork-

ing. Algorand’s design is based on a cryptographic sortition

mechanism combined with the BA⋆ Byzantine agreement

protocol. Algorand avoids targeted attacks at chosen partic-

ipants using participant replacement at every step. Exper-

imental results with a prototype of Algorand demonstrate

that it achieves sub-minute latency and 125× the throughput
of Bitcoin, and scales well to 500,000 users.

ACKNOWLEDGMENTS

Thanks to Iddo Bentov, Ethan Heilman, Jelle van den Hooff,

and our shepherd, Robbert van Renesse, for their helpful com-

ments and suggestions. Gilad, Hemo, and Zeldovich were

supported by NSF awards CNS-1413920 and CNS-1414119.

16

REFERENCES

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K.

Reiter, and J. J. Wylie. Fault-scalable Byzantine fault-

tolerant services. In Proceedings of the 20th ACM Sym-

posium on Operating Systems Principles (SOSP), pages

59–74, Brighton, UK, Oct. 2005.

[2] I. Bentov and R. Kumaresan. How to use Bitcoin to

design fair protocols. In Proceedings of the 34th Annual

International Cryptology Conference (CRYPTO), Santa

Barbara, CA, Aug. 2014.

[3] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld. Proof

of activity: Extending Bitcoin’s proof of work via proof

of stake. In Proceedings of the 2014 Joint Workshop on

Pricing and Incentives in Networks and Systems, Austin,

TX, June 2014.

[4] I. Bentov, A. Gabizon, and A. Mizrahi. Cryptocurren-

cies without proof of work. In Proceedings of the 2016

Financial Cryptography and Data Security Conference,

2016.

[5] I. Bentov, P. Hubáček, T. Moran, and A. Nadler. Tor-

toise and hares consensus: the Meshcash framework

for incentive-compatible, scalable cryptocurrencies.

Cryptology ePrint Archive, Report 2017/300, Apr. 2017.

http://eprint.iacr.org/.

[6] D. J. Bernstein. Curve25519: New Diffie-Hellman speed

records. In Proceedings of the 9th International Confer-

ence on Theory and Practice in Public-Key Cryptogra-

phy (PKC), pages 207–228, New York, NY, Apr. 2006.

[7] Bitcoin Wiki. Confirmation. https://en.bitcoin.
it/wiki/Confirmation, 2017.

[8] BitcoinWiki. Mining hardware comparison,

2016. https://en.bitcoin.it/wiki/Mining_
hardware_comparison.

[9] BitcoinWiki. Bitcoin scalability. https://en.
bitcoin.it/wiki/Scalability, 2017.

[10] BitcoinWiki. Proof of stake. https://en.bitcoin.
it/wiki/Proof_of_Stake, 2017.

[11] D. Boneh and M. K. Franklin. Identity-based encryption

from the Weil pairing. In Proceedings of the 21st Annual

International Cryptology Conference (CRYPTO), Santa

Barbara, CA, Aug. 2001.

[12] G. Brockman. Stellar, July 2014. https://stripe.
com/blog/stellar.

[13] V. Buterin. Minimal slashing conditions. https:
//medium.com/@VitalikButerin/minimal-
slashing-conditions-20f0b500fc6c, Mar. 2017.

[14] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure

and efficient asynchronous broadcast protocols. In

Proceedings of the 21st Annual International Cryptology

Conference (CRYPTO), pages 524–541, Santa Barbara,

CA, Aug. 2001.

[15] M. Castro and B. Liskov. Practical Byzantine fault tol-

erance and proactive recovery. ACM Transactions on

Computer Systems, 20(4), Nov. 2002.

[16] J. Chen and S. Micali. Algorand. Technical report, 2017.

URL http://arxiv.org/abs/1607.01341.

[17] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and

M. Marchetti. Making Byzantine fault tolerant sys-

tems tolerate Byzantine faults. In Proceedings of the

6th Symposium on Networked Systems Design and Im-

plementation (NSDI), pages 153–168, Boston, MA, Apr.

2009.

[18] C. Decker and R. Wattenhofer. Information propaga-

tion in the Bitcoin network. In Proceedings of the 13th

IEEE International Conference on Peer-to-Peer Comput-

ing, Sept. 2013.

[19] R. Dingledine, N. Mathewson, and P. Syverson. Tor:

The second-generation onion router. In Proceedings

of the 13th Usenix Security Symposium, pages 303–320,

San Diego, CA, Aug. 2004.

[20] N. Döttling and S. Garg. Identity-based encryption

from the Diffie-Hellman assumption. In Proceedings

of the 37th Annual International Cryptology Confer-

ence (CRYPTO), pages 537–569, Santa Barbara, CA, Aug.

2017.

[21] J. R. Douceur. The Sybil attack. In Proceedings of the 1st

International Workshop on Peer-to-Peer Systems (IPTPS

’02), Cambridge, MA, Mar. 2002.

[22] P. Erdős and A. Rényi. On the evolution of random

graphs. Publications of the Mathematical Institute of the

Hungarian Academy of Sciences, 5:17–61, 1960.

[23] Ethereum Foundation. Ethereum, 2016. https://www.
ethereum.org/.

[24] Ethereum Foundation. Create a democracy contract in

Ethereum, 2016. https://www.ethereum.org/dao.

[25] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin

mining is vulnerable. In Proceedings of the 2013 Financial

Cryptography and Data Security Conference, Mar. 2014.

[26] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse.

Bitcoin-NG: A scalable blockchain protocol. In Pro-

ceedings of the 13th Symposium on Networked Systems

Design and Implementation (NSDI), pages 45–59, Santa

Clara, CA, Mar. 2016.

[27] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zel-

dovich. Algorand: Scaling Byzantine agreements for

cryptocurrencies. Cryptology ePrint Archive, Report

2017/454, Version 20170924:210956, Sept. 2017. http:
//eprint.iacr.org/.

[28] S. Goldberg, M. Naor, D. Papadopoulos, and L. Reyzin.

NSEC5 from elliptic curves: Provably preventing

DNSSEC zone enumeration with shorter responses.

Cryptology ePrint Archive, Report 2016/083, Mar. 2016.

http://eprint.iacr.org/.

17

http://eprint.iacr.org/
https://en.bitcoin.it/wiki/Confirmation
https://en.bitcoin.it/wiki/Confirmation
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://en.bitcoin.it/wiki/Scalability
https://en.bitcoin.it/wiki/Scalability
https://en.bitcoin.it/wiki/Proof_of_Stake
https://en.bitcoin.it/wiki/Proof_of_Stake
https://stripe.com/blog/stellar
https://stripe.com/blog/stellar
https://medium.com/@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c
https://medium.com/@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c
https://medium.com/@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c
http://arxiv.org/abs/1607.01341
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/dao
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[29] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg.

Eclipse attacks on Bitcoin’s peer-to-peer network. In

Proceedings of the 24th Usenix Security Symposium,

pages 129–144, Washington, DC, Aug. 2015.

[30] S. Higgins. Bitcoin mining pools targeted in wave of

DDoS attacks. Mar. 2015. https://www.coindesk.
com/bitcoin-mining-pools-ddos-attacks/.

[31] A. Kiayias, I. Konstantinou, A. Russell, B. David, and

R. Oliynykov. Ouroboros: A provably secure proof-of-

stake blockchain protocol. Cryptology ePrint Archive,

Report 2016/889, 2016. http://eprint.iacr.org/.

[32] S. King and S. Nadal. PPCoin: Peer-to-peer crypto-

currency with proof-of-stake, Aug. 2012. https:
//peercoin.net/assets/paper/peercoin-
paper.pdf.

[33] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi,

L. Gasser, and B. Ford. Enhancing Bitcoin security

and performance with strong consistency via collec-

tive signing. In Proceedings of the 25th Usenix Security

Symposium, pages 279–296, Austin, TX, Aug. 2016.

[34] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. L.

Wong. Zyzzyva: Speculative Byzantine fault tolerance.

ACM Transactions on Computer Systems, 27(4):7:1–39,

2009.

[35] L. Lamport. The part-time parliament. ACM Transac-

tions on Computer Systems, 16(2):133–169, 1998.

[36] J. Li and D. Mazières. Beyond one-third faulty replicas

in Byzantine fault tolerant systems. In Proceedings of

the 4th Symposium on Networked Systems Design and

Implementation (NSDI), Cambridge, MA, Apr. 2007.

[37] D. Mazières. The Stellar consensus protocol:

A federated model for internet-level consensus.

https://www.stellar.org/papers/stellar-
consensus-protocol.pdf, 2014.

[38] S. Micali. Fast and furious Byzantine agreement. In

Proceedings of the Innovations in Theoretical Computer

Science (ITCS) Conference, 2017.

[39] S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable ran-

dom functions. In Proceedings of the 40th Annual IEEE

Symposium on Foundations of Computer Science (FOCS),

New York, NY, Oct. 1999.

[40] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The

Honey Badger of BFT protocols. In Proceedings of the

23rd ACMConference on Computer and Communications

Security (CCS), pages 31–42, Vienna, Austria, Oct. 2016.

[41] A. Monaghan. US wealth inequality: top 0.1%

worth as much as the bottom 90%, Nov. 2014.

https://www.theguardian.com/business/2014/
nov/13/us-wealth-inequality-top-01-worth-
as-much-as-the-bottom-90.

[42] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash

system. https://bitcoin.org/bitcoin.pdf, 2008.

[43] R. Pass and E. Shi. Hybrid consensus: Efficient consen-

sus in the permissionless model. Cryptology ePrint

Archive, Report 2016/917, 2016. http://eprint.
iacr.org/.

[44] Peercointalk. Peercoin invalid checkpoint.

https://www.peercointalk.org/t/invalid-
checkpoint/3691, 2015.

[45] O. Riordan and N.Wormald. The diameter of sparse ran-

dom graphs. Combinatorics, Probability and Computing,

19(5-6):835–926, Nov. 2010.

[46] P. Rizzo. BitGo launches “instant” Bitcoin transaction

tool, Jan. 2016. http://www.coindesk.com/bitgo-
instant-bitcoin-transaction-tool/.

[47] J. Rubin. The problem of ASICBOOST, Apr.

2017. http://www.mit.edu/~jlrubin/public/
pdfs/Asicboost.pdf.

[48] Y. Sompolinsky and A. Zohar. Secure high-rate trans-

action processing in Bitcoin. In Proceedings of the 2015

Financial Cryptography and Data Security Conference,

2015.

[49] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. SPECTRE:

A fast and scalable cryptocurrency protocol. Cryptol-

ogy ePrint Archive, Report 2016/1159, 2016. http:
//eprint.iacr.org/.

[50] N. Szabo. Smart contracts: Formalizing and securing

relationships on public networks. First Monday, 2(9),

Sept. 1997. http://firstmonday.org/ojs/index.
php/fm/article/view/548/469.

[51] R. Turpin and B. A. Coan. Extending binary Byzan-

tine agreement to multivalued Byzantine agreement.

Information Processing Letters, 18(2):73–76, Feb. 1984.

[52] M. Vasek, M. Thornton, and T. Moore. Empirical analy-

sis of denial-of-service attacks in the Bitcoin ecosystem.

In Proceedings of the 18th International Financial Cryp-

tography and Data Security Conference, Barbados, Mar.

2014.

[53] WonderNetwork. Global ping statistics: Ping times

between WonderNetwork servers, Apr. 2017. https:
//wondernetwork.com/pings.

[54] Zerocoin Electric Coin Company. ZCash: All coins are

created equal, 2017. https://z.cash.

18

https://www.coindesk.com/bitcoin-mining-pools-ddos-attacks/
https://www.coindesk.com/bitcoin-mining-pools-ddos-attacks/
http://eprint.iacr.org/
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.theguardian.com/business/2014/nov/13/us-wealth-inequality-top-01-worth-as-much-as-the-bottom-90
https://www.theguardian.com/business/2014/nov/13/us-wealth-inequality-top-01-worth-as-much-as-the-bottom-90
https://www.theguardian.com/business/2014/nov/13/us-wealth-inequality-top-01-worth-as-much-as-the-bottom-90
https://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
https://www.peercointalk.org/t/invalid-checkpoint/3691
https://www.peercointalk.org/t/invalid-checkpoint/3691
http://www.coindesk.com/bitgo-instant-bitcoin-transaction-tool/
http://www.coindesk.com/bitgo-instant-bitcoin-transaction-tool/
http://www.mit.edu/~jlrubin/public/pdfs/Asicboost.pdf
http://www.mit.edu/~jlrubin/public/pdfs/Asicboost.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
http://firstmonday.org/ojs/index.php/fm/article/view/548/469
http://firstmonday.org/ojs/index.php/fm/article/view/548/469
https://wondernetwork.com/pings
https://wondernetwork.com/pings
https://z.cash

