
AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 83

The Scalable Commutativity Rule:
Designing Scalable Software for
Multicore Processors
By Austin T. Clements, M. Frans Kaashoek, Eddie Kohler, Robert T. Morris, and Nickolai Zeldovich

DOI:10.1145/3068914

Abstract
Developing software that scales on multicore processors
is an inexact science dominated by guesswork, measure-
ment, and expensive cycles of redesign and reimplementa-
tion. Current approaches are workload-driven and, hence,
can reveal scalability bottlenecks only for known workloads
and available software and hardware. This paper introduces
an interface-driven approach to building scalable software.
This approach is based on the scalable commutativity rule,
which, informally stated, says that whenever interface oper-
ations commute, they can be implemented in a way that
scales. We formalize this rule and prove it correct for any
machine on which conflict-free operations scale, such as
current cache-coherent multicore machines. The rule also
enables a better design process for scalable software: pro-
grammers can now reason about scalability from the earli-
est stages of interface definition through software design,
implementation, and evaluation.

1. INTRODUCTION
Until the mid-2000s, continuously rising CPU clock
speeds made sequential software perform faster with
each new hardware generation. But higher clock speeds
require more power and generate more heat, and around
2005 clock speeds reached the thermal dissipation lim-
its of a few square centimeters of silicon. CPU architects
have not significantly increased clock speeds since, but
the number of transistors that can be placed on a chip
has continued to rise. Architects now increase parallel-
ism by putting more CPU cores on each chip. Total cycles
per second continues to grow exponentially, but soft-
ware must scale—must take advantage of parallel CPU
resources—to benefit from this growth.

Unfortunately, scaling is still an untamed problem. Even
with careful engineering, software rarely achieves the holy
grail of linear scalability, where doubling hardware parallel-
ism doubles software performance.

Engineering scalable systems software is particularly
challenging. Systems software, such as operating system
kernels and databases, presents services to applications
through well-defined interfaces. Designers rarely know
ahead of time how applications will use these interfaces,
and thus often cannot predict what bottlenecks to multicore
scalability will arise. Furthermore, scaling bottlenecks may
be a consequence of the definition of the interface itself;
such problems are particularly difficult to address once
many applications depend on the interface.

Lack of a principled way to reason about scalability
hampers all phases of systems software development:
defining an interface, implementing the interface, and
testing its scalability.

When defining an interface, developers lack a system-
atic way of deciding whether a given definition will allow
for scalable implementations. Demonstrating a scalabil-
ity bottleneck requires a complete implementation and a
workload. By the time these are available, interface changes
may no longer be practical: many applications may rely on
the existing interface, and applications that trigger the bot-
tleneck may not be important enough to warrant an inter-
face change.

During design and implementation, developers lack a
systematic way to spot situations in which perfect scalabil-
ity is achievable. This makes it hard to design an imple-
mentation to be scalable from the start. Instead, over time
developers must iteratively improve the software’s parallel
performance as specific workloads uncover bottlenecks,
often re-implementing the software multiple times.

While testing, developers lack a systematic way of
evaluating scalability. The state of the art for testing the
scalability of multicore software is to choose a workload,
plot performance at varying numbers of cores, and use
tools such as differential profiling13 to identify scalabil-
ity bottlenecks exhibited by that workload. Each new
hardware model or workload, however, may expose new
scalability bottlenecks.

This paper presents a new approach to designing scal-
able software that starts with the design of scalable software
interfaces. This approach makes it possible to reason about
multicore scalability before an implementation exists,
and even before the necessary hardware is available. It can
highlight inherent scalability problems, leading to better
interface designs. It sets a clear scaling target for the imple-
mentation of a scalable interface. Finally, it enables system-
atic testing of an implementation’s scalability.

At the core of our approach is what we call the scalable
commutativity rule: In any situation where several opera-
tions commute (meaning there is no way to distinguish their
execution order using the interface), there exists an imple-
mentation that is conflict-free during those operations
(meaning no core writes a cache line that was read or written

The original version of this paper was published in the
Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP’13).

http://dx.doi.org/10.1145/3068914

research highlights

84 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

by another core). Since conflict-free operations empirically
scale (as we argue in Section 2), this implementation scales.
Thus, more concisely, whenever interface operations com-
mute, they can be implemented in a way that scales.

This rule makes intuitive sense: when operations com-
mute, their results (return values and effect on system state)
are independent of order. Hence, communication between
commutative operations is unnecessary and avoiding it yields
a conflict-free implementation. Conflict-free operations can
execute on different cores without mutual interference via
inter-core cache coherence invalidation requests, allowing
total throughput to scale linearly with the number of cores.

The intuitive version of the rule is useful in practice, but
is not precise enough to reason formally about interfaces or
to build automated tools that evaluate scalability. This paper
formalizes the scalable commutativity rule and illustrates
its usefulness in the context of several examples, and for
entire operating systems that support POSIX, a complicated,
widely used interface.

2. SCALABILITY AND CONFLICT-FREEDOM
The scalable commutativity rule assumes that code with
conflict-free memory accesses—that is, code in which no
cache line written by one core is read or written by any other
core—is scalable. This section argues that, under reason-
able assumptions, conflict-free operations do scale linearly
on shared-memory multicore computers.

Multicores maintain a unified, globally consistent view
of memory using MESI-like coherence protocols.15 MESI pro-
tocols coordinate ownership of cached memory at the level
of cache lines. Their key invariant is that a line with a muta-
ble copy in one core’s cache cannot be present in any other
caches: obtaining a mutable copy invalidates any other caches’
immutable copies. This requires coordination, which affects
scalability.

Figure 1 shows the basic state machine implemented by
each cache for each cache line. This maintains the invariant
by ensuring a cache line is either “invalid” in all caches, “mod-
ified” in one cache and “invalid” in all others, or “shared” in
any number of caches. Practical implementations add further
states—MESI’s “exclusive” state, Intel’s “forward” state, and
AMD’s “owned” state—but these do not change the basic
communication required to maintain cache coherence.

Roughly, a set of operations scales when maintaining
coherence does not require ongoing communication. There
are two memory access patterns that fit:

•	 Multiple cores reading and/or writing different cache
lines. This scales because no further communication is
required once each cache line is in the relevant core’s
cache, so further accesses can proceed independently of
concurrent operations.

•	 Multiple cores reading the same cache line. A copy of
the line can be kept in each core’s cache in shared
mode; further reads from those cores can access the
line without communication.

That is, when memory accesses are conflict-free, they do not
require communication. Furthermore, higher-level opera-
tions composed of conflict-free reads and writes are them-
selves conflict-free and will also execute independently and
in parallel. In all of these cases, conflict-free operations exe-
cute in the same time in isolation as they do concurrently, so
the total throughput of N such concurrent operations is pro-
portional to N. Therefore, given a perfect implementation of
MESI, conflict-free operations scale linearly.

Conflict-freedom is not a perfect predictor of scalabil-
ity. Limited cache capacity and associativity cause caches
to evict cache lines (later resulting in cache misses) even
in the absence of coherence traffic, and a core’s first access
to a cache line will always miss. Such misses directly affect
sequential performance, but they may also affect the scal-
ability of conflict-free operations. Satisfying a cache miss
(due to conflicts or capacity) requires the cache to fetch
the cache line from another cache or from memory; the
resulting communication may contend with concurrent
operations for interconnect resources or memory control-
ler bandwidth. But applications with good cache behavior
are unlikely to have such problems, while applications with
poor cache behavior usually have sequential performance
problems that outweigh scalability concerns. We have veri-
fied on real hardware that conflict-free operations actually
do scale linearly under reasonable workload assumptions.6

3. THE SCALABLE COMMUTATIVITY RULE
Connections between commutativity and scalability have
been explored before, especially in the context of operations
on abstract data types.2, 16, 17, 19, 21, 22 For instance, commutative
replicated data types19 are distributed objects whose opera-
tions always commute, allowing scalable, synchronization-
free implementation. Abstract data type operations commute
if they always produce the same result, regardless of order. For
example, set member insertion commutes with itself, but not
with removal: set.insert(i) and set.insert(j) produce the same
results in either order, set.insert(i) and set.remove(j) has order-
dependent results if i = j. But the systems interfaces we care
about are richer, more granular, and more state- and context-
dependent than typical data type operations. Consider the
POSIX creat system call, which creates a file. The calls creat(“/
d1/x”) and creat(“/d2/y”) seem to commute: their results are
the same, regardless of the order they are applied. But if the
disk is almost full and only one inode remains, then the calls

Figure 1. A basic cache-coherence state machine. “R” and “W”
indicate local read and write operations, while “rR” and “rW”
indicate reactions to remote read and write operations. Thick red
lines show operations that cause communication. Thin green lines
show operations that occur without communication.

invalid

shared modified

R W

W

R

rW

R/W

rW

rR

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 85

finish calculating a response, and it does not have to generate
responses in the order invocations were received.

An implementation M exhibits a history H if, when fed
H’s invocations at the appropriate times, M can produce H’s
responses (so that its external behavior equals H overall).
An implementation M is correct for a specification if M’s
responses always obey the specification. This means that
every history exhibited by M is either in , or contains some
invalid invocation.

3.2. Commutativity
SIM commutativity, which we define here, aims to capture state
dependence at the interface level. State dependence means SIM
commutativity must capture when operations commute in some
states, even if those same operations do not commute in other
states; however, we wish to capture this contextually, without
reference to any particular implementation’s state. To reason
about possible implementations, we must capture the scalabil-
ity inherent in the interface itself. This in turn makes it possible
to use the scalable commutativity rule early in software develop-
ment, during interface design and initial implementation.

Commutativity states that actions may be reordered with-
out affecting eventual results. We say a history H′ is a reorder-
ing of H when H|t = H′|t for every thread t. This allows actions
to be reordered across threads, but not within them. For
example, if H = [A1, B2, A−1, C1, B−2, C−1], then [B2, B−2, A1, A−1, C1, C−1]
is a reordering of H, but [B2, C1, B−2, C−1, A1, A−1] is not, since it
does not respect the order of actions in H|1.

Now, consider a history H = X  Y (where  concatenates
action sequences).We say Y SI-commutes in H when given any
reordering Y′ of Y, and any action sequence Z,

X  Y  Z ∈   if and only if  X  Y′  Z ∈ .

This definition captures state dependence at the interface
level. The action sequence X puts the system into a specific
state, without specifying a representation of that state (which
would depend on an implementation). Switching regions Y
and Y′ requires that the exact responses in Y remain valid
according to the specification even if Y is reordered. The
presence of region Z in both histories requires that reorder-
ings of actions in region Y cannot be distinguished by future
operations, which is an interface-based way of saying that Y
and Y′ leave the system in the same state.

Unfortunately, SI commutativity is not sufficient to prove the
scalable commutativity rule. To avoid certain degenerate cases,
we must further strengthen the definition of commutativity to
be monotonic (the M in SIM). An action sequence Y SIM-commutes
in a history H = X  Y when for any prefix P of any reordering of
Y (including P = Y), P SI-commutes in X  P. Equivalently,
Y SIM-commutes in H when, given any prefix P of any reor-
dering of Y, any reordering P′ of P, and any action sequence Z,

X  P  Z ∈   if and only if  X  P′  Z ∈ .

Both SI commutativity and SIM commutativity capture
state dependence and interface basis. Unlike SI commuta-
tivity, SIM commutativity excludes cases where the commu-
tativity of a region changes depending on future operations.
SIM commutativity is what we need to state and prove the
scalable commutativity rule.

do not commute—the second creat call will fail. (Unless, that
is, one or more of the files already exists, in which case the
calls commute after all!) Special cases like this can dominate
analyses that use a strong notion of commutativity. If commu-
tative operations had to commute in all contexts, then only
trivial systems operations could commute, and commutativ-
ity would not help us explore interface scalability.

Our work relies on a new definition of commutativity,
called SIM commutativity (State-dependent, Interface-based,
and Monotonic), that captures state- and context-dependence,
and conditional commutativity, independent of any imple-
mentation. SIM commutativity lets us prove the scalable
commutativity rule, which says that scalable implementa-
tions exist whenever operations commute. Even if an inter-
face is commutative only in a restricted context, there exists
an implementation that scales in that context.

The rest of this section explains this formalism, gives
the rule precisely, and lays out some of its consequences for
system designers.

3.1. Specifications
We represent specifications using actions, where an action is
either an invocation (representing an operation call with argu-
ments) or a response (representing the return value). Splitting
each operation into an invocation and a response lets us
model blocking interfaces and concurrent operations.11 Each
invocation is made by a specific thread and the correspond-
ing response is returned to the same thread. We will write
invocations as creat(“/x”)1 and responses as , where an over-
bar marks responses and subscript numbers are thread IDs.

A particular execution of a system is a history or trace,
which is just a sequence of actions. For example,

H = [A1, B3, C2, A−1, C−2, B−3, D1, D−1, E2, F3, G1, E−2, G−1, F−3],

consists of seven invocations and seven corresponding responses
across three different threads. In a well-formed history, each
thread’s actions alternate invocations and responses, so each
thread has at most one outstanding invocation at any point. H
above is well-formed; for instance, in the thread-restricted sub-
history H|1 = [A1, A−1, D1, D−1, G1, G−1], which selects 1’s actions
from H, invocations and responses alternate as expected.

A specification models an interface’s behavior as a set of
system histories—specifically, a prefix-closed set of well-
formed histories. A system execution is “correct” according
to the specification if its trace is included in the specifica-
tion. For instance, if corresponded to the POSIX specifi-
cation, then [getpid1, 92—

1] ∈ (a process may have PID 92)
but [getpid1, ENOENT1] ∉ (the getpid() system call may not
return that error). A specification constrains both invocations
and responses: [NtAddAtom1] is not in the POSIX specification
because NtAddAtom is not a POSIX system call.

An implementation is an abstract machine that takes invo-
cations and calculates responses. Our constructive proof of
the scalable commutativity rule uses a class of machines on
which conflict-freedom is defined6; a good analogy is a Turing-
type machine with a random-access tape, where conflict-
freedom follows if the machine’s operations on behalf of
different threads access disjoint portions of the tape. An
implementation may “stutter-step,” taking multiple rounds to

research highlights

86 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

isz1 and isz2. But, again, there is a conflict-free implementation
based on adding a Boolean “zeroness” snapshot as well as per-
thread counters. isz simply returns this snapshot. When dec
reduces a per-thread value to zero or below, it reads and sums
all per-thread values and updates the snapshot if necessary.

3.5. Discussion
The rule pushes state and history dependence to an extreme:
it makes a statement about a single history. In broadly com-
mutative interfaces, the arguments and system states for
which a set of operations commutes often collapse into
fairly well-defined classes (e.g., file creation might commute
whenever the containing directories are different). In prac-
tice, implementations scale for whole classes of states and
arguments, not just for specific histories.

On the other hand, there can be limitations on how broadly
an implementation can scale. It is sometimes the case that a
set of operations commutes in more than one class of situa-
tion, but no single implementation can scale for all classes.
For instance, in our modified reference counter, H′1, H′2,
and H′3 all SIM-commute in H′, and we described a scalable
implementation for each situation. However, H′4 does not
SIM-commute, even though it is a union of SIM-commutative
pieces: if the two dec operations were reordered to the start of
the region, then the isz operations would have to return dif-
ferent values. Any reasonable counter implementation must
fail to scale in H′4, because isz must return different values
depending on whether it ran before or after the dec invoca-
tions, and this requires communication between the cores
that ran dec and isz. This can be proved using a converse of
the rule: when a history contains a non-SIM-commutative
region, no non-degenerate implementation can be scalable
in that region.6 (The non-degeneracy condition eliminates
implementations that, for example, never respond to any
invocation, or always respond with an error return value.)

In our experience, real-world interface operations rarely
demonstrate such mutually exclusive implementation choices.
For example, the POSIX implementation in Section 5 scales
quite broadly, with only a handful of cases that would require
incompatible implementations.

4. DEFINING COMMUTATIVE INTERFACES
This section demonstrates more situations of interface-level
reasoning enabled by the rule, using POSIX, the standard
interface for Unix-like operating systems.

The following sections explore four general classes of
changes that make POSIX operations commute in more sit-
uations, enabling more scalable implementations.

4.1. Decompose compound operations
Many POSIX APIs combine several operations into one, lim-
iting the combined operation’s commutativity. For example,
fork both creates a new process and snapshots the current pro-
cess’s entire memory state, file descriptor state, signal mask,
and several other properties. As a result, fork fails to com-
mute with most other operations in the same process, includ-
ing memory writes, address space operations, and many file
descriptor operations. However, applications often follow fork
with exec, which undoes most of fork’s suboperations. With

3.3. Rule
We can now formally state the scalable commutativity rule.

Assume an interface specification that has a correct
implementation and a history H = X  Y exhibited by that
implementation. Whenever Y SIM-commutes in H, there exists
a correct implementation of whose steps in Y are conflict-free.
Since, given reasonable workload assumptions, conflict-free
operations empirically scale on modern multicore hardware,
this implementation is scalable in Y.

Our proof of the rule constructs the scalable implementa-
tion from the correct reference implementation, and relies
on our abstract machine definition and our definition of
conflict-freedom.6

3.4. Example
Consider a reference counter interface with four operations.
reset(v) sets the counter to a specific value v, inc and dec
increment and decrement the counter and return its new
value, and isz returns Z if the counter value is zero and NZ
otherwise. The caller is expected to never decrement below
zero, and once the counter reaches zero, the caller should
not invoke inc.

Consider the counter history

The region H1 SIM-commutes in H, so the rule tells us that a
correct implementation exists that is conflict-free for H1. In fact,
this is already true of a simple shared-counter implementation:
its isz reads the shared counter, but does not write it.

But H2 does not SIM-commute in H, so no scalable imple-
mentation is implied—and, in fact, none is possible. The
problem is that the caller can reason about order via the dec
return values. Only a degenerate implementation, such as
one that refused to respond to certain requests, could avoid
tracking this order in a nonconflict-free way.

We can make dec commute by eliminating its return value.
If we modify the specification so that inc and dec return noth-
ing, then any region consisting exclusively of these operations
commutes in any history. A version of H with this modified
specification is

H′2, unlike H2, SIM-commutes, so there must be an imple-
mentation that is conflict-free there. Per-thread counters
give us such an implementation: each dec can modify
its local counter, while isz sums the per-thread values.
Per-thread and per-core sharding of data structures like
this is a common and long-standing pattern in scalable
implementations.

The rule highlights at least one more opportunity in this
history. H′3 also SIM-commutes in H. However, the per-thread
counter implementation is not conflict-free for H′3: dec3 will
write one component of the state that is read and summed by

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 87

but for operations that release resources, this is often stricter
than applications need and expensive to ensure. For example,
writing to a pipe must deliver SIGPIPE immediately if there are
no read FDs for that pipe, so pipe writes do not commute with
the last close of a read FD. This requires aggressively tracking
the number of read FDs; a relaxed specification that promised
to eventually deliver the SIGPIPE would allow implementa-
tions to use more scalable read FD tracking. Similarly, mun-
map does not commute with memory reads or writes of the
unmapped region from other threads, because other threads
should not be able to write to the unmapped region after mun-
map returns (even though depending on this behavior usu-
ally indicates a bug). Indeed, enforcing this requires remote
TLB shootdowns, which do not scale on today’s hardware. An
munmap (or an madvise) that released virtual memory asyn-
chronously would let the kernel reclaim physical memory
lazily and batch or eliminate remote TLB shootdowns.

As another example, to build a scalable reference coun-
ter, we start with the interface described in Section 3.4: inc
and dec both return nothing and hence always commute. In
place of the isz operation, we introduce a new review opera-
tion that finds all objects whose reference counts recently
reached zero; this frees the developer from having to period-
ically call isz on their own. review does not commute in any
sequence where any object’s reference count has reached
zero and its implementation conflicts on a small number
of cache lines even when it does commute. However, unlike
dec, the user can choose how often to invoke review. More
frequent calls clean up freed memory more quickly, but
cause more conflicts. In our implementation of this scheme,
called Refcache,7 review is called at 10 ms intervals, which is
several orders of magnitude longer than the time required
by even the most expensive conflicts on current multicores.

5. DESIGNING FOR CONFLICT-FREEDOM
To evaluate the implementation difficulty of the previous
section’s commutative interfaces, we built sv6, a research
operating system that aims to provide a POSIX-like inter-
face with as much scalability as is reasonably possible. sv6
includes a ramfs-like in-memory file system called ScaleFS8
and a virtual memory system called RadixVM.7 In design-
ing and implementing sv6, the rule told us that conflict-free
implementations were possible in many cases, which forced
us to come up with designs that achieved conflict-freedom.
Without the rule, we would have given up too soon, deciding
that some corner cases simply cannot be made to scale.

Problems in achieving conflict-freedom fell into two broad
categories. On the one hand, we found situations where a single
logical object (such as a reference counter, a pool of memory,
or the scheduler queue) was accessed from many cores. Here,
we typically used per-core data structures for the commuta-
tive parts of the API, and tried to ensure that noncommutative
parts of the API (such as reconciling per-core reference counts,
or stealing free memory pages or runnable threads from other
cores when one core runs out) are invoked rarely and minimize
cache-line movement when they are invoked. In some cases
this required designing new algorithms, such as Refcache.

On the other hand, we also encountered situations that
accessed logically distinct objects (e.g., files in a directory, or

only fork and exec, applications are forced to accept these
unnecessary suboperations that limit commutativity. POSIX
has a posix_spawn call that addresses this problem by creat-
ing a process and loading an image directly (CreateProcess
in Windows is similar). This is equivalent to fork followed by
exec, eliminating the need for many of fork’s suboperations.
As a result, posix_spawn commutes with most other opera-
tions and permits a broadly scalable implementation.

Another example, stat, retrieves and returns many differ-
ent attributes of a file simultaneously, which makes it non-
commutative with operations on the same file that change
any attribute returned by stat (such as link, chmod, chown,
write, and even read). In practice, applications invoke stat
for just one or two of the returned fields. An alternate API
that gave applications control of which field or fields were
returned would commute with more operations and enable
a more scalable implementation of stat.6

POSIX has many other examples of compound return val-
ues. sigpending returns all pending signals, even if the caller
only cares about a subset; and select returns all ready file
descriptors, even if the caller needs only one of them.

4.2. Embrace specification nondeterminism
POSIX requires that the open system call returns the lowest-
numbered unused file descriptor (FD) for the newly opened
file. This rule is a classic example of overly deterministic
design that results in poor scalability. Because of this rule,
open operations in the same process (and any other FD allo-
cating operations) do not commute, since the order in which
they execute determines the returned FDs. This constraint is
rarely needed by applications, and an alternate interface that
could return any unused FD could use scalable allocation
methods, which are well-known. Many other POSIX interfaces
get this right: mmap can return any unused virtual address
and creat can assign any unused inode number to a new file.

4.3. Permit weak ordering
Another common source of limited commutativity is strict
ordering requirements between operations. For many oper-
ations, ordering is natural and keeps interfaces simple to use;
for example, when one thread writes data to a file, other threads
can immediately read that data. Synchronizing operations like
this are naturally noncommutative. Communication inter-
faces, on the other hand, often enforce strict ordering, but may
not need to. For instance, most systems order all messages
sent via a local Unix domain socket, even when using SOCK_
DGRAM, so any send and recv system calls on the same socket
do not commute (except in error conditions). This is often
unnecessary, especially in multi-reader or multi-writer situa-
tions, and an alternate interface that does not enforce order-
ing would allow send and recv to commute as long as there is
both enough free space and enough pending messages on the
socket. This in turn would allow an implementation of Unix
domain sockets to support scalable communication.

4.4. Release resources asynchronously
A closely related problem is that many POSIX operations
have global effects that must be visible before the operation
returns. This is generally good design for usable interfaces,

research highlights

88 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

covering file system and virtual memory operations, and
checked the resulting test cases against Linux and the sv6
operating system. The results are shown in Figures 2 and 3,
respectively. Each square represents a pair of system calls.
The color of each square represents the fraction of test cases
that fail to be conflict-free despite being commutative.

In the case of Linux, we can see that the kernel is already
quite scalable: many pairs of system calls are conflict-free for
all tests generated by Commuter. However, there are also
many pairs that commute but are not conflict-free. This indi-
cates that even a mature and reasonably scalable operating
system implementation misses many cases that can be made

pages in a virtual address space), but the data structures typi-
cally used to access these objects induced unnecessary con-
flicts. In particular, we discovered that many sophisticated
data structures like red-black trees, splay trees, AVL trees, con-
current lock-free skip lists, etc., are a poor fit for the scalable
commutativity rule. For example, balancing operations on
binary trees have nonlocal effects: an operation on one branch
can cause conflicts over much of the tree. Lock-free skip lists
and other lock-free balanced lookup data structures avoid
locking, but still induce conflicts on operations that should
commute: inserts and removes make nonlocal memory writes
to preserve balance (or an equivalent), and those writes con-
flict with commutative lookups. The effect of these conflicts on
performance can be dramatic. A frequent solution involved
switching to array-based data structures, which tend to natu-
rally lend themselves to avoiding conflicts for commutative
operations. For example, using an array to represent the open
file descriptors for a process naturally provides conflict-free-
dom for operations on distinct file descriptors, because those
operations access different addresses in the array.

Naive arrays are not great for situations where the key
space is large. One solution for medium-size keys is to use a
radix tree. For instance, we use radix trees in the sv6 virtual
memory system, RadixVM,7 to implement the mapping from
virtual addresses to the corresponding mapped objects. Since
radix trees have no balancing operations, accesses to different
addresses tend to not conflict. At the same time, simple com-
pression techniques in the radix tree allow for a compact rep-
resentation that’s much more efficient than a single flat array.

For large or variable-sized keys, hash tables are a natural
choice. For example, in the sv6 file system, we use a hash
table to represent each directory. This means that concur-
rent operations on different file names in a single directory
are unlikely to conflict (unless they map to the same hash
table bucket). This is in contrast to traditional file system
designs that take out a single lock to ensure that operations
do not modify the same directory entry at the same time.

6. TESTING FOR CONFLICT-FREEDOM
Fully understanding the commutativity of a complex inter-
face is tricky, and checking if an implementation achieves
conflict-freedom whenever operations commute adds another
dimension to an already difficult task. To help developers
apply the rule during testing, we developed a tool called
Commuter that automates this process.6 First, Commuter
takes a symbolic model of an interface and computes precise
conditions for when that interface’s operations commute.
Second, Commuter uses these conditions to generate con-
crete tests of sets of operations that commute according to
the interface model, and thus should have a conflict-free
implementation according to the commutativity rule. Third,
Commuter checks whether a particular implementation is
conflict-free for each test case. A developer can use these test
cases to understand the commutative cases they should con-
sider, to iteratively find and fix scalability bottlenecks in their
code, and to perform regression tests to ensure scalability
bugs do not creep into the implementation over time.

To illustrate how Commuter can help with testing for
scalability, we wrote a symbolic model of the POSIX interface

Figure 2. Conflict-freedom of commutative system call pairs in Linux 3.8,
showing the fraction and absolute number of test cases generated
by Commuter that are not conflict-free for each system call pair.

open
link

unlink
rename

stat
fstat
lseek
close
pipe
read
write
pread
pwrite
mmap

munmap
mprotect
memread
memwrite

m
em

w
ri
te

m
em

re
ad

m
pr
ot
ec
t

m
un
m
ap

m
m
ap

pw
ri
te

pr
ea
d

w
ri
te

re
ad

pi
pe

cl
os
e

ls
ee
k

fs
ta
t

st
at

re
na
m
e

un
lin
k

lin
k

op
en

Linux (17,206 of 26,238 cases scale)

52 8 21242 30 32 28 2 47 36 4 15 62 17151139

35 5 10544 20 32 20 1 11 74 16 99

12 2 33 12 6 11 6 3 16 6

35 5 10540 20 32 20 1 2 9 63

12 2 33 10 8 9 7 3

41 18 30 20 28 4 16 7

6813752 49 26 4 117

16 4 4 7 9 4 39

1

16 2 15350 51 44 34

6 5 25 3 15664 44 42

20 2 23260122

40 4 218114

6121803955

29 1

114

23 20

28

All tests
conflict-free

All tests
conflicted

Figure 3. Conflict-freedom of commutative system call pairs in sv6.

open
link

unlink
rename

stat
fstat
lseek
close
pipe
read
write
pread
pwrite
mmap

munmap
mprotect
memread
memwrite

m
em

w
ri
te

m
em

re
ad

m
pr
ot
ec
t

m
un
m
ap

m
m
ap

pw
ri
te

pr
ea
d

w
ri
te

re
ad

pi
pe

cl
os
e

ls
ee
k

fs
ta
t

st
at

re
na
m
e

un
lin
k

lin
k

op
en

sv6 (26,115 of 26,238 cases scale)

9

2

2 4 12

1 1 4

5 6

5 13

12

24 12

1 1

9

All tests
conflict-free

All tests
conflicted

AUGUST 2017 | VOL. 60 | NO. 8 | COMMUNICATIONS OF THE ACM 89

One potential way to expand the reach of the rule and
create more opportunities for scalable implementations is
to find ways in which nonconflict-free operations can scale.
For example, while streaming computations are in general
not linearly scalable because of interconnect and memory
contention, we have had success with scaling interconnect-
aware streaming computations. These computations place
threads on cores so that the structure of sharing between
threads matches the structure of the hardware interconnect
and such that no link is oversubscribed. On one 80-core x86
system, repeatedly shifting tokens around a ring mapped to
the hardware interconnect achieves the same throughput
regardless of the number of cores in the ring, even though
every operation causes conflicts and communication.
Mapping computations to this model might be difficult,
and given the varying structures of multicore interconnects,
the model itself may not generalize. However, this problem
has close ties to job placement in data centers and may be
amenable to similar approaches. Likewise, the evolving
structures of data center networks could inform the design
of multicore interconnects that support more scalable
computations.

8. RELATED WORK
This section briefly explains the relation between the scal-
able commutativity rule and previous work that explores
thinking about scalability and commutativity. For a more
in-depth discussion of related work that also covers scal-
able operating systems and testing approaches we refer the
reader to Clements’s thesis.6

8.1. Scalability
Israeli and Rappoport12 introduce the notion of disjoint-
access-parallel memory systems. Roughly, if a shared mem-
ory system is disjoint-access-parallel and a set of processes
access disjoint memory locations, then those processes scale
linearly. Like the commutativity rule, this is a conditional
scalability guarantee: if the application uses shared memory
in a particular way, then the shared memory implementa-
tion will scale. However, where disjoint-access parallelism is
specialized to the memory system interface, our work encom-
passes any software interface. Attiya et al.3 extend Israeli and
Rappoport’s definition to additionally require non-disjoint
reads to scale. Our work builds on the assumption that mem-
ory systems behave this way and we have confirmed that real
hardware closely approximates this behavior.6

Both the original disjoint-access parallelism paper and
subsequent work18 explore the scalability of processes that
have some amount of non-disjoint sharing, such as compare-
and-swap instructions on a shared cache line or a shared
lock. Our work takes a black-and-white view because we have
found that, on real hardware, a single modified shared cache
line can wreck scalability.

The Laws of Order2 explore the relationship between the
“strong noncommutativity” of an interface and whether
any implementation of that interface must contain atomic
and/or fence instructions for correct concurrent execution.
These instructions slow down execution by interfering with
out-of-order execution, even if there are no memory access

to scale according to the commutativity rule. Some of these
correspond to well-known scalability problems in Linux, such
as concurrent operations on different file names in the same
directory (which conflict on a per-directory lock) or concurrent
operations on the virtual memory subsystem (which conflict
on a per-address-space lock7). Others are new bottlenecks that
may not have been previously discovered: Commuter has sys-
tematically discovered latent scalability problems.

In contrast with Linux, sv6 is conflict-free for nearly every
commutative test case. In part this is due to our choice of
data structures that are naturally conflict-free, as described
in the previous section. While testing sv6, Commuter also
discovered many commutative corner cases that we would
not have thought of by ourselves. For example, consider the
rename system call and the access system call, which can be
used to check if a file exists. Suppose there are two existing
files, a and b. Commuter discovered that rename(a, b) com-
mutes with access(b), because in either order, rename suc-
ceeds and access indicates that b exists. However, our initial
implementation was not conflict-free, because access used
an internal function that not only checked if the file exists,
but also looked up the file’s inode. To make this case conflict-
free, we introduced a separate function to check whether a file
name exists in a directory hash table, without actually read-
ing its corresponding value. During testing, we discovered a
number of other common design patterns, such as deferring
work whenever possible, preceding pessimism (i.e., writes
to memory locations) with optimistic read-only checks, and
avoiding reads unless absolutely necessary.

For a small number of commutative operations, sv6 is not
conflict-free. The majority of these cases involve idempotent
updates to internal state, such as two lseek operations that
both seek a file descriptor to the same offset, or two anony-
mous mmap operations with the same fixed base address and
permissions. While it is possible to implement these scalably,
every implementation we considered significantly reduced
the performance of more common operations, so we explicitly
chose to favor common-case performance over total scalability.
Other cases represent intentional engineering decisions in the
interest of practical constraints on memory consumption and
sequential performance. Complex software systems inevitably
involve conflicting requirements, and scalability is no excep-
tion. However, the presence of the rule forced us to explicitly
recognize, evaluate, and justify where we made such trade-offs.

7. DISCUSSION
One surprising aspect of the rule is that it allows us to reason
about scalability without having to measure the throughput
of a system as a function of the number of cores. Indeed, this
paper contains no such graph. To be sure that our rule works
in practice, we measured the scalability of a mail server run-
ning on sv6, using commutative system calls. The result was
perfect scalability. On the one hand, this demonstrates the
power of the rule: even for a previously untested hardware
system and workload, we are able to confidently predict
scalability. On the other hand, scalability is not the same
as performance, and a perfectly scalable implementation
could have lower total performance than an implementa-
tion tuned for efficiency on a small number of cores.

research highlights

90 COMMUNICATIONS OF THE ACM | AUGUST 2017 | VOL. 60 | NO. 8

Referencesconflicts. The Laws of Order resemble the commutativity
rule, but draw conclusions about sequential performance,
rather than scalability.

It is well understood that cache-line contention can result
in bad scalability. A clear example is the design of the MCS
lock,14 which eliminates scalability collapse by avoiding
contention for a particular cache line. Other good examples
include scalable reference counters.1, 5, 9 The commutativity
rule builds on this understanding and identifies when arbi-
trary interfaces can avoid conflicting memory accesses.

8.2. Commutativity
The use of commutativity to increase concurrency has been
widely explored. Steele describes a parallel programming
discipline in which all operations must be either causally
related or commutative.21 His work approximates commuta-
tivity as conflict-freedom. We show that commutative opera-
tions always have a conflict-free implementation, implying
that Steele’s model is broadly applicable. Rinard and Diniz17
describe how to exploit commutativity to automatically par-
allelize code. They allow memory conflicts, but generate
synchronization code to ensure atomicity of commutative
operations. Similarly, Prabhu et al.16 describe how to auto-
matically parallelize code using manual annotations rather
than automatic commutativity analysis. Rinard and Prabhu’s
work focuses on the safety of executing commutative opera-
tions concurrently. This gives operations the opportunity to
scale, but does not ensure that they will. Our work focuses on
scalability directly: we show that any concurrent, commuta-
tive operations have a scalable implementation.

The database community has long used logical readsets
and writesets, conflicts, and execution histories to reason
about how transactions can be interleaved while maintain-
ing serializability.4 Weihl extends this work to abstract data
types by deriving lock conflict relations from operation com-
mutativity.22 Transactional boosting applies similar tech-
niques in the context of software transactional memory.10
Shapiro et al.19, 20 extend this to a distributed setting, leverag-
ing commutative operations in the design of replicated data
types that support updates during faults and network parti-
tions. Like Rinard and Prabhu’s work, the work in databases
and its extensions focuses on the safety of executing commu-
tative operations concurrently, not directly on scalability.

9. CONCLUSION
The scalable commutativity rule helps developers to rea-
son about scalability in all three phases of software design:
defining an interface, designing and implementing the soft-
ware, and testing its scalability properties. The rule does not
require the developer to have a target workload or a physical
machine to reason about scalability. We hope that program-
mers will find the commutativity rule helpful in producing
software that is scalable by design.

Acknowledgments
This research was supported by NSF awards SHF-964106
and CNS-1301934, by Quanta, and by Google. Eddie Kohler
was partially supported by a Microsoft Research New Faculty
Fellowship and a Sloan Research Fellowship.�

Austin T. Clements, M. Frans Kaashoek,
Robert T. Morris, and Nickolai Zeldovich
({aclements, kaashoek, rtm, zeldovich}@
csail.mit.edu), MIT CSAIL, Cambridge, MA.

Eddie Kohler (kohler@seas.harvard.edu),
Harvard University School of Engineering
and Applied Sciences, Computer
Science Area, Cambridge, MA.

Copyright held by owner(s)/authors.

	 1.	 Appavoo, J., da Silva, D., Krieger, O.,
Auslander, M., Ostrowski, M.,
Rosenburg, B., Waterland, A.,
Wisniewski, R.W., Xenidis, J., Stumm, M.,
Soares, L. Experience distributing
objects in an SMMP OS. ACM Trans.
Comput. Syst. 25, 3 (August 2007).

	 2.	 Attiya, H., Guerraoui, R., Hendler, D.,
Kuznetsov, P., Michael, M.M.,
Vechev, M. Laws of order: Expensive
synchronization in concurrent
algorithms cannot be eliminated.
In Proceedings of the 38th ACM
Symposium on Principles of
Programming Languages (Austin, TX,
January 2011), 487–498.

	 3.	 Attiya, H., Hillel, E., Milani, A. Inherent
limitations on disjoint-access parallel
implementations of transactional
memory. In Proceedings of the
21st Annual ACM Symposium
on Parallelism in Algorithms and
Architectures (Calgary, Canada,
August 2009), 69–78.

	 4.	 Bernstein, P.A., Goodman, N.
Concurrency control in distributed
database systems. ACM Comput.
Surv. 13, 2 (June 1981), 185–221.

	 5.	 Boyd-Wickizer, S., Clements, A.,
Mao, Y., Pesterev, A., Kaashoek, M.F.,
Morris, R., Zeldovich, N. An analysis
of Linux scalability to many cores. In
Proceedings of the 9th Symposium
on Operating Systems Design and
Implementation (OSDI) (Vancouver,
Canada, October 2010).

	 6.	 Clements, A.T. The scalable
commutativity rule: Designing
scalable software for multicore
processors. PhD thesis,
Massachusetts Institute of
Technology (June 2014).

	 7.	 Clements, A.T., Kaashoek, M.F.,
Zeldovich, N. RadixVM: Scalable
address spaces for multithreaded
applications (revised 2014-08-05).
In Proceedings of the ACM EuroSys
Conference (Prague, Czech Republic,
April 2013), 211–224.

	 8.	 Clements, A.T., Kaashoek, M.F.,
Zeldovich, N., Morris, R.T., Kohler, E.
The scalable commutativity rule:
Designing scalable software for
multicore processors. ACM Trans.
Comput. Syst. 32, 4 (January 2015),
10:1–10:47.

	 9.	 Ellen, F., Lev, Y., Luchango, V., Moir, M.
SNZI: Scalable nonzero indicators.
In Proceedings of the 26th ACM
SIGACT-SIGOPS Symposium on
Principles of Distributed Computing
(Portland, OR, August 2007), 13–22.

	10.	 Herlihy, M., Koskinen, E. Transactional
boosting: A methodology for highly-
concurrent transactional objects.
In Proceedings of the 13th ACM
Symposium on Principles and Practice

of Parallel Programming (Salt Lake
City, UT, February 2008), 207–216.

	11.	 Herlihy, M.P., Wing, J.M.
Linearizability: A correctness
condition for concurrent objects. ACM
Trans. Programm. Lang. Syst. 12, 3
(1990), 463–492.

	12.	 Israeli, A., Rappoport, L. Disjoint-
access-parallel implementations of
strong shared memory primitives. In
Proceedings of the 13th ACM SIGACT-
SIGOPS Symposium on Principles of
Distributed Computing (Los Angeles,
CA, August 1994), 151–160.

	13.	 McKenney, P.E. Differential profiling.
Softw. Pract. Exp. 29, 3 (1999), 219–234.

	14.	 Mellor-Crummey, J.M., Scott, M.L.
Algorithms for scalable
synchronization on shared-memory
multiprocessors. ACM Trans. Comput.
Syst. 9, 1 (1991), 21–65.

	15.	 Papamarcos, M.S., Patel, J.H. A
low-overhead coherence solution for
multiprocessors with private cache
memories. In Proceedings of the 11th
Annual International Symposium on
Computer Architecture (Ann Arbor,
MI, June 1984), 348–354.

	16.	 Prabhu, P., Ghosh, S., Zhang, Y.,
Johnson, N.P., August, D.I.
Commutative set: A language extension
for implicit parallel programming.
In Proceedings of the 2011 ACM
SIGPLAN Conference on Programming
Language Design and Implementation
(San Jose, CA, June 2011), 1–11.

	17.	 Rinard, M.C., Diniz, P.C. Commutativity
analysis: A new analysis technique
for parallelizing compilers. ACM
Trans. Programm. Lang. Syst. 19, 6
(November 1997), 942–991.

	18.	 Roy, A., Hand, S., Harris, T. Exploring
the limits of disjoint access parallelism.
In Proceedings of the 1st USENIX
Workshop on Hot Topics in Parallelism
(Berkeley, CA, March 2009).

	19.	 Shapiro, M., Preguiça, N., Baquero, C.,
Zawirski, M. Conflict-free replicated
data types. In Proceedings of the
13th International Conference on
Stabilization, Safety, and Security
of Distributed Systems (Grenoble,
France, October 2011), 386–400.

	20.	 Shapiro, M., Preguiça, N., Baquero, C.,
Zawirski, M. Convergent and
commutative replicated data types.
Bull. EATCS 104 (June 2011), 67–88.

	21.	 Steele, G.L., Jr. Making asynchronous
parallelism safe for the world.
In Proceedings of the 17th ACM
Symposium on Principles of
Programming Languages (San
Francisco, CA, January 1990), 218–231.

	22.	 Weihl, W.E. Commutativity-based
concurrency control for abstract data
types. IEEE Trans. Comput. 37, 12
(December 1988), 1488–1505.

