
Scalable Address Spaces Using RCU Balanced Trees

Austin T. Clements M. Frans Kaashoek Nickolai Zeldovich
MIT CSAIL

{aclements,kaashoek,nickolai}@csail.mit.edu

Abstract
Software developers commonly exploit multicore processors by
building multithreaded software in which all threads of an applica-
tion share a single address space. This shared address space has a
cost: kernel virtual memory operations such as handling soft page
faults, growing the address space, mapping files, etc. can limit the
scalability of these applications. In widely-used operating systems,
all of these operations are synchronized by a single per-process
lock. This paper contributes a new design for increasing the concur-
rency of kernel operations on a shared address space by exploiting
read-copy-update (RCU) so that soft page faults can both run in par-
allel with operations that mutate the same address space and avoid
contending with other page faults on shared cache lines. To enable
such parallelism, this paper also introduces an RCU-based binary
balanced tree for storing memory mappings. An experimental eval-
uation using three multithreaded applications shows performance
improvements on 80 cores ranging from 1.7× to 3.4× for an imple-
mentation of this design in the Linux 2.6.37 kernel. The RCU-based
binary tree enables soft page faults to run at a constant cost with an
increasing number of cores, suggesting that the design will scale
well beyond 80 cores.

Categories and Subject Descriptors D.4.1 [Operating Systems]:
Process Management; E.1 [Data Structures]: Trees; D.1.3 [Pro-
gramming Techniques]: Concurrent Programming—Parallel pro-
gramming

General Terms Algorithms, Design, Performance

Keywords RCU, Virtual memory, Multicore, Lock-free algorithms,
Concurrent balanced trees, Scalability

1. Introduction
A common parallel programming model is shared-memory multi-
threading, where all threads of an application share a single address
space. Such shared address spaces require the kernel virtual memory
(VM) system to be likewise concurrent, and the kernel’s approach
to concurrent address space operations can severely affect the con-
currency of a multithreaded VM-intensive application as a whole.
In fact, it is not uncommon for applications to use processes instead
of threads to avoid a single, shared address space, but this compli-
cates sharing. Applications can also unknowingly make intensive
use of VM: libc may call mmap or munmap internally to grow the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’12, March 3–7, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-0759-8/12/03. . . $10.00

private
file rx

private
anon rw

shared
anon rw

shared
file rw

Region
tree
root

Page directory
root

Page tables

Page directory

OS-specified Hardware-specified

Figure 1. An address space with four mapped regions. Crossed-out
page table entries do not map pages. Some pages have not been soft
faulted yet, and thus do not map pages, despite being in a mapped
region.

address space or memory-map files, and even a seemingly innocent
memory access can result in a soft page fault that modifies the appli-
cation’s shared page tables. The overall goal of this paper is to make
such multithreaded applications that use virtual memory intensively
(knowingly or unknowingly) scale well.

In most widely-used operating systems, an address space consists
principally of a set of memory mapping regions and a page table
tree, as shown in Figure 1. Each memory mapping region describes a
range of virtual addresses and stores information about the mapping
such as protection bits and backing files. Most widely-used operating
systems use a tree to store the memory regions because applications
often have thousands of memory regions (e.g., due to dynamic
linking) and a tree enables the operating system to find the region
containing a particular virtual address quickly. The page tables
record the architecture-specific mapping from virtual pages to
physical pages and, unlike the region tree, their structure is dictated
by the hardware. This paper assumes x86-64 four-level page tables
for concreteness, but the ideas are not specific to the x86.

Operating systems provide three address space operations of
particular interest: the mmap and munmap system calls (collectively
referred to as “memory mapping operations”), and page faults,
which happen when the hardware cannot map a virtual address
to a physical address. mmap creates memory mapping regions and
adds them to the region tree. munmap removes regions from the tree
and invalidates entries in the hardware page table structures. Page
faults look up the faulting virtual address in the region tree and, if
the virtual address is mapped, install an entry in the hardware page
table and resume the application. We specifically focus on “soft”
page faults, which may allocate new pages and new page tables or
map pages already present in memory, but which do not page in data
from an external drive.

The region tree and hardware page tables are shared by all
threads in a process. To ensure correct behavior when several cores

1

Parallel page faults,
mmap/munmap delayed

Serial mmap/munmap,
page faults delayed

Parallel page faults

zzz zzz

zzz

zzz

zzz

Time

Figure 2. Linux address space concurrency with four threads. Page
faults (skinny blue rectangles) and memory mapping operations
(wide red rectangles) delay each other. Threads are sleeping in
regions marked ZZZ

.

perform mmap, munmap, and page faults, most operating systems
use several locks. Widely-used systems such as Solaris and Linux
use a single read/write lock per process, which serializes page faults
and memory mapping operations as shown in Figure 2, limiting
the scalability of multithreaded VM-intensive applications. In these
operating systems, a process can perform only one memory mapping
operation at a time, and these operations also delay page faults. Page
faults for different virtual addresses run concurrently, but block other
threads from performing memory mapping operations.

Our goal is to make page faults scale to large numbers of cores.
This requires addressing two basic forms of serialization. First, we
must allow soft page faults to run concurrently with mmap and
munmap operations to eliminate serialization on the per-process
read/write lock. This is difficult because all three operations modify
the address space data structures (the region tree, the page tables,
or both). More subtly, we must also make page faults run without
modifying shared cache lines to eliminate serialization caused by
processor caches acquiring the cache line in an exclusive state. This
is difficult because locks, even in read mode, require modifying
shared cache lines.

To achieve our goal, this paper presents a new concurrent address
space design that eliminates the above sources of contention by
applying read-copy-update (RCU) [15] to the VM system and by
introducing the BONSAI tree, an RCU-based concurrent balanced
tree used as part of the design. While RCU is widely adopted in the
Linux kernel, it has not been applied to the kernel’s address space
structures because of two significant challenges: the address space
structures obey complex invariants that make RCU’s restrictions on
readers and writers onerous, and fully applying RCU to the address
space structures requires an RCU-compatible concurrent balanced
tree, for which no simple, applicable solutions exist.

To evaluate our approach, we implemented our concurrent
address space design in Linux 2.6.37. This design leverages the
BONSAI tree to apply RCU pervasively to both page table and tree
operations, which allows page faults on distinct virtual addresses
to proceed with no contention due to either locks or exclusive
cache line accesses. For three VM-intensive workloads—Metis and
Psearchy, from MOSBENCH [4], and Dedup from Parsec [2]—our
design improves throughput on 80 cores by 3.4×, 1.8×, and 1.7×
respectively, relative to stock Linux. Further, a microbenchmark
demonstrates that the cost of handling a page fault in our design is
nearly constant, independent of concurrent page faults or memory
mapping operations, while this same cost grows rapidly in stock
Linux as page fault and memory mapping load increases.

This paper contributes a novel design for an RCU-compatible bal-
anced tree (BONSAI), a new address space design that uses BONSAI
to achieve highly-scalable page fault handling, an implementation
of that design in Linux, and an experimental evaluation using appli-
cations and microbenchmarks on an 80 core machine. Although our
implementation is for Linux, we believe that our design could also
be applied to other operating systems; while the details of address
space management differ between kernels, most shared-memory
kernels have similar address space representations.

The rest of the paper is organized as follows. Section 2 relates
our contributions to previous work. Section 3 describes the design
of the BONSAI tree. Section 4 covers existing address space designs
in depth, using Linux as a case study. Section 5 describes our design
for concurrent address space operations and section 6 summarizes
its implementation in Linux. Section 7 reports on the experimental
evaluation of our design and how it compares to the stock Linux
approach and section 8 provides a brief discussion of our findings.
Finally, section 9 summarizes our conclusions.

2. Background and related work
Address spaces in modern operating systems. Address spaces
can consist of a large number of virtual address regions. As one
example, on a typical Linux desktop, GNOME applications and
web browsers such as Firefox and Chrome use nearly 1,000 distinct
memory regions in each process. To manage this large number of
regions, most modern operating systems use structures like the ones
in Figure 1 to represent an address space. Linux uses a red-black
tree for the regions, FreeBSD uses a splay tree, and Solaris and
Windows (prior to Windows 7) use AVL trees [18, 24]. Linux and
Solaris use a single read/write lock per address space. FreeBSD is
more fine-grained: it uses a lock per region and a single write lock
for mutating operations on an address space, serializing soft page
faults with address space changes. Prior to Windows 7, Windows
used a system-wide PFN lock [18]. Windows 7 uses fine-grained
locking with better reported scaling results [24], but exact details
are not public.

Since soft page faults must still modify address space structures
(e.g., an entry in a page table), fine-grained locks are typically used
in conjunction with per-process read locks to protect simultaneous
page faults to nearby virtual addresses. The design proposed in
this paper eliminates the read locks for page faults, but maintains
the fine-grained locks for updates to page table entries. In many
applications, including the three applications we study in this paper,
these fine-grained locks are uncontended and typically stay in a
core’s cache, thus incurring negligible overhead.

Workarounds. It is not uncommon for system programmers to
change their applications to use processes instead of threads to
avoid contention caused by shared address space locking. For
example, Psearchy, from MOSBENCH [4], was modified to use
processes instead of threads. However, it is difficult to migrate
an application from a shared address space to processes because
sharing is less straightforward, and the added complexity makes it
harder to maintain and evolve the application. Furthermore, using
processes instead of threads can incur a performance penalty, since
every process must fault on every shared page, rather than the entire
application taking at most one fault per page [3].

Super pages can also increase scalability. On x86-64, this reduces
the number of page faults by a factor of 512 (other platforms are
similar), substantially reducing contention on the address space lock.
However, applications that map many small regions (files or anony-
mous memory) cannot benefit from this solution. Furthermore, as
memory demands and core counts grow, super pages will encounter
the same scalability problems that regular pages currently contend
with.

2

This paper presents a design that makes shared address space
operations scalable, so that multithreaded applications can scale
naturally to large numbers of cores, without the need to work around
kernel limitations.

RCU. Our approach to increasing concurrency for address-space
operations exploits the two key ideas of RCU [13]: allowing read
operations to proceed without read locks, and delayed freeing of data
structures to avoid races where a writer frees data while a reader is
still using it. The benefit of avoiding read locks is twofold: not only
does it allow read operations to proceed during write operations,
but it eliminates the overhead of acquiring a read lock even when
there are no writers. Even in read mode, acquiring a lock requires
fetching the lock’s cache line from the core that last updated the
lock status; on today’s multicore processors a contended cache line
can take hundreds of cycles to fetch from a remote core, and RCU
avoids this cost entirely.

Write operations, which coordinate using an exclusive lock,
may change a data structure and remove entries from it while read
operations are still using the removed entries. To ensure that these
concurrent read operations do not observe invalid data, RCU delays
freeing memory until it is guaranteed that all read operations that
started before the data structure update have finished, at which point
no further operations can observe the old data. Various schemes
have been proposed to do the garbage collection of these delay-freed
items, and the Linux kernel provides implementations ranging from
a classic scheme that uses the scheduler to detect quiescence [17] to
an epoch-based “sleepable” RCU implementation [14].

RCU data structures. The Linux kernel has increasingly adopted
RCU for kernel data structures to improve scalability [16], but
applying RCU is often not straightforward: RCU requires that
mutating operations update only one pointer and that readers read
each pointer at most once. This makes the update appear atomic:
a reader will appear to execute either entirely before a concurrent
update or entirely after, depending on when it reads the one updated
pointer. More complex data structures such as balanced trees where
mutation operations require multiple updates do not obviously fit
with RCU, and none of the balanced trees in the Linux kernel use
RCU. The BONSAI tree introduced by this paper is one solution to
applying RCU to complicated data structures.

Trees with lock-free lookup. Fraser [6, 7] introduced a clever de-
sign for a red-black tree that allows read operations to proceed
without locks, and write operations on different parts of the tree
to proceed in parallel using fine-grained locks. To balance a tree,
Fraser’s design uses five fine-grained locks, one for each node in-
volved in the balancing operation. Several other data structures,
such as concurrent skip lists [20] and concurrent B-trees [10] also
provide lock-free lookups with fine-grained write parallelism. How-
ever, such fine-grained parallelism is a poor match for address space
concurrency because memory mapping operations must maintain
invariants across multiple tree operations; maintaining internal tree
consistency is not enough. The BONSAI tree takes advantage of the
existing address space write-locking, and targets a simpler point in
the design space that avoids the need for fine-grained locks.

Howard and Walpole [9] propose a relativistic red-black tree that
supports lock-free lookups. By starting with a traditional lock-based
tree, their design must explicitly handle tree rotations by consider-
ing several special cases. In contrast, BONSAI’s design is based on
an intuitively-correct tree design from functional languages, which
achieves high performance with one key optimization to avoid path
copying (described in §3.3). BONSAI’s design is conceptually sim-
ilar to Herlihy’s approach for implementing concurrent data ob-
jects [8], but BONSAI derives additional simplicity by not handling
concurrent modifications, which requires significant complexity in
Herlihy’s approach. All of the code for BONSAI, except for delete,

X

Y Z

b

a

p

X Y

Z

a

b

p

)

Figure 3. Single left rotation at a. Circles represent tree nodes, and
triangles represent subtrees. The three updated pointers, at nodes p,
a, and b are marked with red triangles.

is included in this paper, and the complete implementation is only
180 lines of code.

3. An RCU-friendly balanced tree
This section describes the BONSAI tree, an RCU-compatible bal-
anced binary tree based on the principle of non-destructive updates.
As an RCU-compatible data structure, the BONSAI tree is designed
to allow read operations such as lookup to proceed without locks in
parallel with mutation operations such as insert and delete. Beyond
the immediate concurrency implications of allowing read operations
to proceed in parallel with writes, on large multicore machines, there
are benefits to avoiding the cache coherence traffic caused by read
locks. If the working set is in the local core’s cache, read operations
can proceed without any remote fetches. A single write lock is still
used to coordinate mutation operations, but in many practical situa-
tions, including the Linux virtual memory system, the user of the
tree must also ensure higher-level invariants across multiple tree
operations and thus requires exclusive locks regardless.

The challenge to designing an RCU-compatible binary tree is
keeping the tree balanced without introducing races with lock-free
read operations, so that tree operations run in O(logn) time in the
size of the tree. Maintaining balance requires mutation operations
to perform tree rotations, which update multiple pointers across
multiple tree nodes. If these updates are performed non-atomically,
a concurrent, lock-free lookup may encounter a race condition where
it observes only some of the pointer updates and returns an incorrect
result.

For example, consider a single left rotation performed by an
insert in order to rebalance a subtree—like the one pictured in
Figure 3—and a concurrent lookup destined for a value in subtree Z.
If the lookup reaches node a and then the rotation happens, it will
proceed into subtree Y instead of subtree Z and miss the value it is
searching for. The BONSAI tree avoids such races by design.

3.1 Approach
The design of the BONSAI tree is inspired by persistent data
structures from functional programming. Such data structures are
never modified in place; rather, the functional equivalent of a
mutation operation leaves the existing data structure intact and
returns a new instance of the data structure that reflects the change.
This is kept efficient by sharing as much of the structure as possible
between the original and “modified” instances.

Functional binary trees are an excellent example of this concept.
Inserting into a functional binary tree constructs a new tree contain-
ing the original tree’s elements, plus the newly inserted element.
The two trees share all nodes except for those along the path from
the newly inserted element to the root. Hence, like their in-place
counterparts, insert into a functional tree requires time proportional
to the height of the tree: it must traverse down the tree to find the
insertion location, and then it must traverse back up the tree to con-
struct the new path to the root and, ultimately, the new root node.
Balanced trees are implemented by performing tree rotations as

3

typedef struct node
{

struct node ∗left, ∗right;
unsigned int size;
int value;
} node t;

Figure 4. Node structure

void
insert(node t ∗∗root, int value)
{
∗root = doInsert(∗root, value);
}

static node t ∗
doInsert(node t ∗node, int value)
{

if (!node) return mkNode(NULL, NULL, value);

if (value < node→value)
return mkBalanced(node,

doInsert(node→left, value), node→right);
if (value > node→value)

return mkBalanced(node,
node→left, doInsert(node→right, value));

return node;
}

Figure 5. Inserting into a tree

the tree is reconstructed from the bottom up, but, again, rotation
is implemented by constructing a new, rotated subtree, rather than
rotating a subtree in place.

Following this approach allows the BONSAI tree to be “correct
by construction” in an RCU environment. In their simplest form,
BONSAI operations construct a new tree non-destructively and then
expose the modification in a single atomic step by updating a pointer
to the tree’s root node. If a lock-free reader reads the root node
pointer before an update, it will operate entirely on the old tree; if it
reads the root node pointer after an update, it will operate entirely
on the new tree.

Steven Adams presents an elegant design for a functional se-
quential bounded-balance tree [1], and our tree derives from his
design. Bounded-balance trees [19] exchange a certain degree of
imbalance—controlled by a weight parameter—for fewer rotations
than a strictly balanced tree. Combined with an optimization we de-
scribe in §3.3, this allows the BONSAI tree to produce fewer garbage
nodes than a more conventional balanced tree, reducing stress on
the memory allocator and CPU caches.

3.2 Algorithm
Figures 4 through 9 show the most important parts of an RCU-
compatible bounded-balance tree, implemented in C but executing
in a functional style. Each node has four fields (see Figure 4): a
pointer to the left child, a pointer to the right child, the node’s value,
and a size field that records the number of nodes in the subtree
rooted at that node.

doInsert, the core of insert, first recurses down the tree starting
at the root until it falls off the edge of the tree. The recursive base
case is easy: inserting a value into an empty tree simply creates a
new node with no children. The actual work happens as doInsert
unwinds its call stack, reconstructing the tree from the newly created
node up to the root, ultimately returning a new tree that shares the
majority of its structure with the original tree, but contains the

static node t ∗
mkBalanced(node t ∗cur, node t ∗left, node t ∗right)
{

int ln = nodeSize(left);
int rn = nodeSize(right);
int value = cur→value;
node t ∗out;

if (ln && rn && rn > WEIGHT ∗ ln)
out = mkBalancedL(left, right, value);

else if (ln && rn && ln > WEIGHT ∗ rn)
out = mkBalancedR(left, right, value);

else if (!UPDATE IN PLACE)
out = mkNode(left, right, value);

else
goto updateInPlace;

rcu free(cur);
return out;

updateInPlace:
cur→left = left;
cur→right = right;
cur→size = 1 + ln + rn;
return cur;
}

Figure 6. Balancing a subtree

inserted value. Finally, insert makes this entire updated tree visible
to readers atomically by updating the pointer to the tree’s root.

doInsert rebuilds each subtree using mkBalanced, shown in
Figure 6. In its simplest form, mkBalanced takes a left subtree, left,
and a right subtree, right, and returns a new node with value value
conjoining the left and right subtrees. The reader can assume for
now that UPDATE IN PLACE is false, as this enables an optimization
which is described later.

If left and right subtrees are in balance (i.e., neither subtree con-
tains more than a small multiple of the number of nodes in the
other subtree), mkBalanced returns a new node with the given value
and left and right children. If the new subtree would be out of bal-
ance, mkBalanced defers to either mkBalancedL or mkBalancedR,
depending on which subtree is the smallest.

After constructing the new node, mkBalanced frees the original
node being replaced, but does so in an RCU-delayed manner. Thus,
the old node (and, in turn, the entire old tree) remains valid until
every concurrent lookup that may be using the old tree completes.

mkBalancedL, shown in Figure 7, performs either single or
double left rotation using singleL or doubleL, depending on the
balance of the subtrees, returning the newly created, balanced
subtree. singleL implements the single rotation of Figure 3, but
does so without any in-place pointer updates, resulting in a new
rotated subtree, like shown in Figure 8(a), where we see the two
new nodes created by singleL, a′ and b′, as well as the new nodes
created from p′ up to the root by mkBalanced as doInsert unwinds
its call stack. mkBalancedR, not shown, performs the equivalent
right rotations.

lookup, shown in Figure 9, is identical to an ordinary, sequential
tree look-up except for the enclosing calls to mark it as an RCU
reader (which are no-ops in a non-preemptible Linux kernel).
Because the BONSAI tree performs non-destructive updates and
delay-frees all nodes, lookup does not require any locks, nor does it
need any form of synchronization or atomic instructions on an x86
system.1

1 Memory fence instructions are required on some non-x86 architectures,
like the Alpha, for reading RCU-managed pointers between rcu read begin
and rcu read end.

4

static node t ∗
mkBalancedL(node t ∗left, node t ∗right, int value)
{

if (nodeSize(right→left) < nodeSize(right→right))
return singleL(left, right, value);

return doubleL(left, right, value);
}

static node t ∗
singleL(node t ∗left, node t ∗right, int value)
{

node t ∗out = mkNode(mkNode(left, right→left, value),
right→right,
right→value);

rcu free(right);
return out;
}

static node t ∗
doubleL(node t ∗left, node t ∗right, int value)
{

node t ∗out =
mkNode(mkNode(left, right→left→left, value),

mkNode(right→left→right, right→right,
right→value),

right→left→value);
rcu free(right→left);
rcu free(right);
return out;
}

Figure 7. Single and double left rotations

X Y Z

b

a b'

a'

p p'

X Y Z

b

a b'

a'

p

Without optimization;
O(log n) new nodes.

(a) With optimization;
2 new nodes.

(b)

Figure 8. Single left rotation at a, in functional style. The box
represents the root node pointer. Garbage nodes are shown faded,
new nodes are highlighted in green, and red triangles mark updated
pointers.

bool
lookup(node t ∗∗root, int value)
{

rcu read begin();
node t ∗node = ∗root;
while (node && node→value != value) {

if (node→value > value)
node = node→left;

else
node = node→right;

}
rcu read end();
return node != NULL;
}

Figure 9. The lookup function

delete, not shown, has two cases. If the node to delete is a leaf,
delete merely omits the node from the tree and rebuilds the path to
the root using mkBalanced. If the node is an interior node, delete
removes the node’s successor from the tree (which must be a leaf
and a descendant of the node being deleted) and substitutes it for the
node being replaced, rebuilding from the successor up to the root.

3.3 Optimization
The implementation described so far allocates and frees O(logn)
nodes for each insert. This is unavoidable in a true functional setting,
where every version of the data structure must remain intact, but
BONSAI has no such requirement. As presented, BONSAI delays
the commit point—the time at which the inserted value becomes
visible—until the final root pointer update. This is unnecessarily
strict. For example, once a rotated subtree has been constructed, the
remaining work is simply path copying to the root (assuming no
additional rotations), but since this newly constructed path is struc-
turally equivalent to the original path modulo the one pointer to the
rotated subtree, we can atomically update this one pointer directly,
rather than waiting to update the root pointer after reconstructing
the entire path. The key to the resulting optimization is shown in
Figure 8(b): once mkBalanced performs a non-destructive rotate,
we can make that rotation visible immediately by updating a single
pointer in p and avoid path copying. Furthermore, this optimization
is safe under multiple rotations: since the contents of the tree are
identical before and after a rotation, committing a rotation to the tree
will have no affect on the results returned by a concurrent lookup.

By eliminating path copying, this optimization reduces the
number of garbage nodes produced by insertion from O(logn) to
O(1) expected, which translates directly into less pressure on the
memory allocator and the CPU cache, especially when combined
with RCU delayed freeing. In practice, using a weight of 4, insertion
performs only ∼0.35 rotations on average; with this optimization,
this results in about 2 allocations and 1 free per insert on average,
regardless of tree size.

The implementation of this optimization lies entirely in mkBalanced
and does not affect the bottom-up insertion approach. If mkBalanced
does not have to create a new node for rebalancing, it simply updates
the current node in place. Typically, this will be a no-op, but if either
left or right is the result of a rotation deeper in the tree, this will
commit that rotation to the tree. mkBalanced also updates the size
field in place; this need not be done atomically with the child pointer
update because the size field is only accessed by writers.

Deletion can be optimized similarly, with one caveat. Since
deleting an interior node requires two operations—removing the
deleted node’s successor and substituting it for the deleted node—
delete must perform path copying from the successor up to the
deleted node. By restricting itself to in-place updates only above the
deleted node, delete accomplishes these two steps atomically.

This optimization is similar in effect to what Howard’s relativistic
red-black trees achieve [9], but its correctness is more readily
apparent in BONSAI. Furthermore, it is generally applicable to other
concurrent data structures derived from functional structures.

4. Address spaces in an operating system
Figure 1 in §1 briefly summarized the overall structure of an address
space common to several kernels. An address space consists of a
collection of non-overlapping memory regions or virtual memory
areas (VMAs), where each area spans some set of pages in the
virtual address space. On UNIX-like operating systems, these
regions are manipulated by calls to memory mapping operations like
mmap and munmap, though the regions may not correspond directly
to the arguments to these calls. For example, an mmap adjacent to
an existing VMA may simply extend that VMA, and an munmap in
the middle of a VMA may split that VMA into two VMAs.

5

Each address space also maintains hardware page tables that map
virtual addresses to physical addresses (on the x86, this consists of
a tree of page directories and page tables, rooted at a root page
directory). These hardware page tables are filled in lazily: creating a
virtual memory area does not allocate pages or mark them present
in the page tables. When an application tries to access a page of
memory in a region spanned by some VMA for the first time, the
hardware will generate a page fault, which the kernel will trap. The
page fault handler looks for a VMA containing the faulting virtual
address and, if one exists, only then will the kernel allocate a page
and fill in the corresponding page table entry. Typically, the VMAs
in an address space are kept in a balanced tree to facilitate efficiently
looking up the VMA containing a faulting virtual address.

Multithreaded applications share an address space between
threads, which, in most operating systems, means they share the set
of VMAs as well as the hardware page tables. Memory mapping
operations and page faults both access and modify these shared
structures, and this concurrency must be addressed. Such address
space designs suffer from four general classes of concurrency
hazards, each mirroring some component of the address space
structure: races involving the VMA tree, races involving VMA
bound adjustment, races involving page table allocation and freeing,
and races involving page allocation and freeing. These races are
not simple coding errors, but design races that violate the semantics
and invariants of address space operations. For example, in a naive
solution, a race between an unmap operation and a page fault could
result in a page being mapped in an otherwise unmapped region of
memory.

The rest of this section uses the Linux kernel as a case study to
illustrate how existing operating systems handle concurrent address
space operations in multithreaded applications.

4.1 Linux case study: address space read/write locking
Linux, like many operating systems, protects address space struc-
tures using a per-process read/write lock, known as the mmap sem
read/write semaphore in Linux. This allows memory mapping opera-
tions like mmap and munmap, which acquire the lock in write mode,
to perform complex operations atomically, while permitting page
faults, which acquire the lock in read mode, to proceed in parallel
with each other, as shown in Figure 2.

Running page faults concurrently is not straightforward, because
page faults also modify the address space, and these modifications
must be protected from concurrent page faults. At a minimum, a
page fault must fill a page table entry, and it may have to allocate
page tables or fill kernel-specific data structures. For this, Linux
uses various fine-grained spinlocks, the two most notable of which
are the page directory lock, which protects the insertion of new
page directories and page tables into existing page directories, and
the page table entry (PTE) lock, which protects the insertion of
pages into page tables. Memory mapping operations generally do
not acquire these fine-grained locks because they already acquire
the mmap sem in write mode, which prevents memory mapping
operations and page faults from executing simultaneously. One
exception is that munmap acquires PTE locks as it clears page
tables. These locks are summarized below.

Lock Type Protects
mmap sem read/write per process Address space
Page dir. lock spinlock per process Page dir. entries
PTE lock spinlock per page table Page table entries

Linux employs double-check locking to reduce both how fre-
quently it must acquire these fine-grained locks and the duration
they must be held for. For example, the page fault handler acquires
the page directory lock only after observing a non-present page
directory entry, and even then it acquires the lock only after opti-

mistically allocating memory for the new page table. If a concurrent
page fault has filled in the page directory entry in the meantime, it
simply discards the optimistically allocated page table. Because of
double-check locking, typically the only fine-grained lock the page
fault handler acquires is the PTE lock. Indeed, recent versions of
Linux have a separate PTE lock per page table to eliminate lock
contention for all but nearby page faults (virtual addresses within
2 MB of each other on x86-64).

The write lock protects structures accessed and modified by
memory mapping operations and the combination of the read
lock and these fine-grained locks protects structures accessed and
modified by the page fault handler, while still generally allowing
page fault handlers to execute in parallel. Despite the scheme’s
sophistication, this locking has a concurrency cost: if any application
thread is modifying the address space, no other thread can be taking
page faults and if any thread is taking a page fault, no other thread
can modify the address space. Furthermore, even in the absence
of memory mapping operations, concurrent soft page faults still
contend for the cache line that stores the state of the read/write lock.
Under a heavy page fault load, the cost of this coherency traffic
alone can affect application-level benchmark throughput.

5. Concurrent address spaces
In this section, we describe our concurrent address space design by
introducing three increasingly-concurrent refinements of the base-
line read/write locking employed by Linux. The first refinement,
called fault locking, reduces the amount of time that memory map-
ping operations hold the mmap sem read/write lock in write mode,
allowing soft page faults to execute concurrently with the read-only
parts of a memory mapping operation. The second refinement, called
hybrid locking/RCU, eliminates the need for soft page faults to ac-
quire the mmap sem lock at all by applying RCU to the hardware
page table structures and individual VMA entries, while protecting
the VMA tree with a new read/write lock. The third refinement,
called pure RCU, uses the RCU-based BONSAI tree to eliminate the
read/write lock protecting the tree, eliminating any contended cache
lines that must be modified by every soft page fault.

5.1 Fault locking
In this first refinement, we observe that memory mapping operations
begin with a read-only phase in which they plan how to modify
the address space before performing any data structure updates. In
principle, page faults can safely proceed in parallel with the memory
mapping operation during this time, hence permitting greater address
space concurrency.

To take advantage of this observation, we add a fault lock to
each address space and modify the page fault handler to acquire
this lock in read mode, rather than the coarser mmap sem. Memory
mapping operations still acquire the mmap sem in write mode and
thus preclude races between each other, but before doing anything
that could conflict with the page fault handler, they acquire the
fault lock in write mode. The fault lock is released only when the
mmap sem is released, which, much like two-phase locking, keeps
existing atomicity properties intact.

While memory mapping operations must acquire the fault lock
before making any modifications, even before this, if they read
anything that might be modified by a concurrent page fault, they
must acquire the fault lock then to serialize the page fault. This
complication will arise again in the RCU-based refinements, where
it will require a more nuanced solution.

This refinement introduces no race conditions compared to
stock Linux locking, but it only partially addresses the serialization
between memory mapping operations and page fault handling,
because it allows only marginally more concurrency between fault
handlers and memory mapping operations.

6

unmap

VMA 2VMA 1

Time

Page
fault

VMA 1

VMA 1

VMA 2

VMA 2 VMA 3

Virtual address space

Figure 10. When splitting VMA 2 into two regions, the range
originally covered by the top of VMA 2 can appear unmapped after
VMA 2 is adjusted and before VMA 3 is created.

5.2 Hybrid locking/RCU
Our ultimate goal is to allow the page fault handler to run concur-
rently with both other page faults and memory mapping operations.
Our solution to the problems that arise after eliminating the read
lock around the page fault handler is twofold. Wherever possible,
we apply RCU to eliminate the need for read locking. Then, in cases
where a rare, non-benign race might arise, we detect inconsistencies
and restart the page fault handler, this time with the mmap sem held
to ensure progress (similarly, we retry with locking in occasional
“hard” cases).

The hybrid locking/RCU refinement approaches this goal without
any structural changes to the address space. Other than the VMA
tree, all of the data structures involved in the address space can be
modified one step at a time without violating any invariants. This
is not the case for the VMA tree, so this refinement still serializes
access to the VMA tree using a read/write lock, which both the page
fault handler and memory mapping operations acquire around tree
operations. The pure RCU refinement, covered in the next section,
tackles this last need for locking.

Removing the read lock around the page fault handler unleashes
a number of races. We describe those that follow from the general
address space design here and dive in to a few Linux-specific races
in §6.

VMA split race. If no VMA contains the faulting address, the page
fault could be a “segfault,” or there may be a stack region that should
be expanded to cover the faulting address, or we may be in the midst
of a VMA split. The first two situations occur in stock Linux and we
have to acquire the mmap sem to handle them. The third situation
is new and occurs because during a split, a region of memory can
transiently appear unmapped, as shown in Figure 10. The munmap
operation splits a VMA into two VMAs in two steps: it adjusts the
bound of the existing VMA at time 2 and at time 3 it inserts the new
VMA for the top part. Concurrently at time 2, a page fault handler
may run that looks up an address in the top part of the VMA, which
is momentarily not present. Since this race is unlikely, our approach
is to simply retry the page fault with the mmap sem held, which
guarantees progress by preventing further races.

Page table deallocation race. Much like how pages are allocated
on demand by soft page faults, page directories and tables are only
allocated when a page fault encounters an empty page directory
entry while installing mappings for a VMA that was faulted in.
Conversely, unmapping a region recursively scans the page table tree,
as illustrated in Figure 11, freeing not only the pages in that region,
but also any page directories and tables that are no longer needed,
clearing page directory entries that point to these. In the read/write
locking refinement, the mmap sem prevents a concurrent unmap
and page fault within the same VMA. Without the mmap sem, two
problems arise from the race between page faults and the unmap
scan. The first is classic RCU: the unmap may free VMAs, page

Unmap scan

Freed memory

U
nm

ap
pe

d
re

gi
on

Page directories Page tables

Cleared entry

Pages

Figure 11. Unmapping a region of an x86-64 four-level page table
tree. Unmapping recursively scans the page table tree to free unused
page directories and page tables, in addition to freeing pages. Our
design RCU-delays these frees. Unmapping must also clear page
directory and page table entries that point to structures freed by the
unmap, which introduces write-write races with page faults that fill
these entries.

tables, or page directories that are being used by a concurrent page
fault. To address this, we simply RCU-delay freeing these structures.
The second is described next.

Page table fill race. A subtler race arises because both page faults
and unmapping operations modify page directory and page table
entries: page faults fill pointers to newly allocated pages and page
tables, and unmapping operations clear pointers to freed page tables
and pages. In both stock Linux and hybrid locking/RCU, fine-
grained locking prevents simultaneous page fault handlers from
filling the same page directory entry. However, this does not address
the race between page faults and unmapping.

Consider a concurrent page fault and munmap on the same VMA,
where the munmap has already surpassed the faulting address, delay
freed the page table containing the faulting address, and cleared the
corresponding page directory entry. The concurrent page fault will
observe the blank page directory entry and could naively conclude
that it needs to allocate a new page table and ultimately a new page.
At best, these will never be freed; at worst, they could wreak havoc
with a later mapping of the same region of memory. Luckily, this
race is easy to detect: after acquiring the fine-grained PTE lock
protecting the page table entry to be filled, but before actually filling
it, the page fault handler double-checks that the VMA has not been
marked as deleted and that the faulting address still falls within the
VMA’s bounds. In the unlikely event that the mapping of the faulting
address has changed since the page fault’s VMA lookup, this test
will fail and the page fault handler will retry with the mmap sem
held. Curiously, this race check itself has a race: the mapping could
still change after the check and before filling the page table entry,
since mapping operations do not hold any fine-grained locks when
manipulating VMAs. However, for numerous reasons, munmap does
acquire PTE locks as it clears page tables, which is enough to ensure
that, if the mapping does change, either the page fault handler’s race
check will observe the modified VMA, or munmap will observe and
free pages allocated by the racing page fault.

While the solution to this race does not directly involve RCU,
because of RCU, it is safe to follow page table pointers without any

7

Serial mmap/munmap,
parallel page faults

zzz

Parallel page faults

Time

Figure 12. Pure RCU design concurrency with four threads. Page
faults (skinny blue) neither delay memory mapping operations (wide
red), nor are delayed by memory mapping operations, which benefits
both page faults and memory mapping operations.

fine-grained locks. As a result, contention on the page directory lock
and the PTE locks is virtually nonexistent.

Together, these three solutions address races involving bound
adjustment and deletion of VMAs, allocation and freeing of page
directories and page tables, and allocation and freeing of pages,
three of the four major components of the address space. To address
the fourth and final major component, the VMA tree, this refinement
falls back on locking, which we remedy in our fourth concurrency
refinement.

5.3 Pure RCU
Operating systems typically store the set of virtual memory areas
in a balanced tree, such as a red-black or AVL tree, to facilitate fast
lookup. However, these trees are not RCU-safe: as described in §3,
a lock-less lookup during a concurrent insert or delete can result in
the lookup failing, even if the element being looked-up is unrelated
to the element being inserted or deleted.

Hence, to fully eliminate coarse-grained locking from the page
fault handler, pure RCU further refines hybrid locking/RCU by re-
placing the locked red-black tree with the RCU-compatible BONSAI
tree. This addresses races in all components of the address space,
while BONSAI’s lock-free lookups allow page faults to proceed
fully in parallel both with each other and with memory mapping
operations.

In contrast with the limited concurrency permitted by stock
Linux’s read/write locking, as shown in Figure 2, Figure 12 demon-
strates the concurrency permitted by pure RCU page fault handling.
In Figure 12, page fault handlers run concurrently with everything.
As a result, the kernel can process page faults at a much higher
rate and, furthermore, eliminating interference between page faults
and memory mapping operations also improves memory mapping
performance.

6. Implementation
We implemented the three new address space concurrency designs
in the Linux 2.6.37 kernel. The implementation passes the Linux
Test Project [11], as well as our own stress tests, and is further
validated by a lock protection analysis we performed in the process
of modifying the Linux virtual memory system and exhaustive
schedule checking of a model of the VM system designed to capture
key races. Our implementation consists of∼2,600 lines of code, and
the core BONSAI tree implementation is 180 lines of code.

The current implementation handles regular soft page faults in
anonymous memory mappings. For memory-mapped files and copy-

on-write faults, the implementation retries the page fault with the
lock held. Fortunately, retrying is fast, so this decision poses little
overhead: almost always, the VMA found on the first try will still
be applicable on the second try (which can be checked easily), thus
avoiding the entire VMA lookup, and the page directory walk will
still be hot in the CPU cache.

The implementation was guided by a lock protection analysis we
performed using a version of QEMU [21] modified to trace every
memory access and provide a hypercall interface for recording
memory allocations and reachability, lock acquisitions, and lock
releases. Using type information from memory allocations, this
analysis tool inspected how frequently different variables and
structure fields were accessed with and without certain locks, thus
inferring what data was likely to be protected by what locks and
where in the source code those variables and fields were read and
written. While this analysis was far from perfect, it was a valuable
tool for understanding the Linux virtual memory system and finding
potential concurrency hazards and races.

Several advanced features of the Linux virtual memory system
complicated the RCU-based implementations and introduced ad-
ditional potential races. Several of these races relate to Linux’s
reverse map, which tracks all virtual mappings of each physical
page to facilitate operations such as swapping. For example, the
page fault handler is responsible for associating an “anon vma” with
each anonymous memory VMA for tracking reverse mappings in
that VMA. Luckily, this operation occurs infrequently, so the imple-
mentation simply retries the page fault in such cases. Likewise, the
implementation handles various other uncommon operations—such
as Linux’s stack guard reservations—using the same retry-with-
locking mechanism used when races are detected.

The mmap cache, a seemingly innocent feature of the Linux
page fault handler, causes surprising trouble. This caches the most
recent VMA tree lookup in each address space. Any VMA lookup
first checks if the cached VMA satisfies the request; if so, it can
return immediately; if not, it looks up the VMA and stores the result
in the cache. Maintaining this cache in an RCU environment, where
a VMA can be doomed to deletion by the time it is looked up, is
possible (albeit difficult), but with many threads faulting on different
VMAs, it does more harm than good: the hit rate will be low (below
1% in our benchmarks), so every page fault will update it, which can
result in significant cache coherence traffic. Thus, for the two RCU-
based designs, we simply disable the mmap cache because it harms
overall performance. A more complete solution might dynamically
disable the mmap cache for multithreaded processes.

7. Evaluation
This section evaluates the following hypotheses:

• Can application scalability be limited by bottlenecks in the
implementation of address spaces?
• Do the techniques proposed in this paper eliminate those bottle-

necks?
• Is a simple fine-grained locking approach sufficient to remove

the bottlenecks or is RCU necessary?
• Are short-duration read-locks acceptable in the soft page fault

handler, or is the complete application of RCU necessary for
scalability?
• Are application workarounds still necessary to achieve peak

scalability?

7.1 Evaluation method
Only VM-intensive applications benefit from the designs described
in this paper, so we selected three VM-intensive benchmarks:
Metis [12], a single-server multicore implementation of MapReduce

8

from the MOSBENCH suite [4], used to compute a word position
index from a 2 GB in-memory text file; Psearchy, a parallel text
indexer based on searchy [23] (also from MOSBENCH), applied
to the Linux 2.6.35-rc5 source tree; and Dedup, a deduplication-
based file compressor from the Parsec benchmark suite [2], used to
compress a 5.3 GB ISO image.

We selected these three benchmarks because they are multi-
threaded (the other MOSBENCH applications are multi-process)
and exhibit high page fault rates (the other Parsec applications do
not), qualities we expect to see in more applications given trends
towards higher core counts and larger data sets. Furthermore, the
two MOSBENCH applications have alternate implementations that
allow us to compare our general solutions with application-specific
workarounds for address space scalability issues. The performance
of other applications from the MOSBENCH and Parsec benchmark
suites, which are not VM-intensive, is not affected by the three
concurrent address space designs proposed in this paper.

We test the three benchmarks on Linux 2.6.37 with stock Linux
as well as the three refinements described in §5. We also use
microbenchmarks to evaluate the scalability and performance of
just the page fault handler.

All experiments are performed on an 80 core machine with eight
2.4 GHz 10 core Intel E7-8870 chips and 256 GB of RAM on a
Supermicro X8OBN base board. For both application benchmarks
and microbenchmarks, we take the best of three runs to mitigate
unrelated system activity. For application benchmarks, we spread
enabled cores across sockets in order to maximizes the total cache
and memory resources available to the application. The microbench-
marks are sensitive to cache size, so for these we group enabled
cores on as few sockets as possible so that the per-core resources
remain roughly constant across each experiment.

7.2 Application results
In all three applications, the greater address space concurrency
of the pure RCU design results in significantly higher application
throughput at large core counts; indeed, Metis and Dedup achieve
near-perfect speed-up to 80 cores under the pure RCU design, while
stock Linux read/write locking achieves 45× speed-up over single-
core performance at best. Furthermore, as the number of cores
increases, the gap between the pure RCU design and the three less-
concurrent designs widens, suggesting that, as hardware becomes
increasingly parallel, sophisticated concurrency schemes such as
RCU and lock-free operation will become increasingly important.

Metis. Metis, shown in Figure 13, runs one worker thread per
core, which together mmap and soft fault approximately 12 GB of
anonymous memory as they generate intermediate tables between
the map, reduce, and merge phases. As in the original MOSBENCH
configuration, we use Metis with Streamflow [22], a scalable mem-
ory allocator, which mmaps allocation pools in 8 MB “segments,”
resulting in relatively few memory mapping operations compared to
a more conservative allocator like glibc’s malloc.

For Metis, the pure RCU design achieves near-perfect 75× speed-
up at 80 cores and outperforms read/write locking by 3.4×. On the
other hand, read/write locking’s performance degrades with more
cores because of both lock contention and cache contention for
the mmap sem. While the pure RCU design has less then 1% idle
time at 80 cores, read/write locking has 12% idle time, waiting to
acquire mmap sem, and further spends 9.6% of its time contending
for the mmap sem’s wait queue spinlock when it fails to acquire the
lock. At the same time, it spends 31% of its time manipulating the
mmap sem cache line to acquire and release the lock. Finally, the
increased contention in the kernel indirectly causes a 44% increase in
the user time required to complete a job (e.g., due to increased cache
pressure and interconnect traffic). Together, these factors account for
the difference between the performance of read/write locking and

1/0
Read/write locking

Fault locking
Hybrid locking/RCU

Pure RCU

0

500

1000

1500

2000

2500

1 8 16 24 32 40 48 56 64 72 80

T
hr

ou
gh

pu
t(

jo
bs

/h
ou

r)

Cores

Figure 13. Metis throughput for each page fault concurrency de-
sign.

Read/write locking
Fault locking

Hybrid locking/RCU
Pure RCU

0

100

200

300

400

500

600

700

800

900

1000

1 8 16 24 32 40 48 56 64 72 80

T
hr

ou
gh

pu
t(

jo
bs

/h
ou

r)

Cores

Figure 14. Psearchy throughput for each page fault concurrency
design.

pure RCU at 80 cores. Fault locking shows little improvement over
read/write locking. Hybrid locking/RCU outperforms read/write
locking by 2.7×, but only achieves 59× speed-up because of the
remaining contention on the lock protecting the VMA tree.

Psearchy. Psearchy is more heterogeneous than Metis, stressing
both large and small memory regions. During initialization, Psearchy
starts one worker thread per core, all of which simultaneously malloc
and zero a 128 MB per-thread hash table; during main execution,
these threads use libc’s stdio library to read files, which internally
calls mmap and munmap to manage memory for stream buffers,
resulting in ∼30,000 small anonymous mmap/munmap pairs. As in
the original MOSBENCH configuration, we index the Linux 2.6.35-
rc5 source tree, consisting of 368 MB of text across 33,312 source
files. To avoid IO bottlenecks, all input files are in the buffer cache
and all output files are written to tmpfs.

The results for Psearchy are shown in Figure 14. Psearchy
performs 13× more memory mapping operations per second than
Metis, and, as a result of this high rate, the serialization of mmap
and munmap ultimately bottlenecks Psearchy’s performance in
all four concurrency designs. With read/write locking, this base
lock contention is further aggravated by page faults acquiring the
mmap sem in read mode; indeed, performance decays beyond the
peak at 32 cores owing to the non-scalability of Linux’s read/
write lock implementation. The other three designs perform better
because they do not acquire the mmap sem in the page fault handler,

9

1/0
Read/write locking

Fault locking
Hybrid locking/RCU

Pure RCU

0

100

200

300

400

500

600

1 8 16 24 32 40 48 56 64 72 80

T
hr

ou
gh

pu
t(

jo
bs

/h
ou

r)

Cores

Figure 15. Dedup throughput for each page fault concurrency
design.

leaving only mmap and munmap to contend on that lock. Fault
locking performs 27% better at 80 cores because it reduces this
window of contention between memory mapping operations and
page faults, even though it still acquires long-duration locks. Hybrid
locking/RCU performs 1.7× better than stock because it nearly
eliminates lock contention between memory mapping operations
and page faults; its performance decays at high core counts because
of contention for the cache line storing the lock that protects the
VMA tree. Finally, the pure RCU design eliminates both lock and
cache contention in the page fault handler, outperforming read/write
locking by 1.8× and hybrid locking/RCU by 3.1%.

Metis and Psearchy provide alternate implementations specifically
designed to work around address space scalability limits at the
cost of increased application complexity. Metis can use 2 MB
superpages, reducing the number of page faults by a factor of 512.
Despite this optimization, unmodified Metis using the pure RCU
design outperforms the optimized Metis using read/write locking;
the former achieves 76× speed-up at 80 cores while the latter only
63× speed-up. Hence, for Metis, it is better to address the root
problem in the kernel, rather than work around it in the application.

Psearchy requires relatively little shared state, so it can run in
a multi-process configuration, avoiding shared address spaces alto-
gether. Unlike Metis, Psearchy is ultimately limited both by lock
contention between mapping operations and by lock contention
within glibc itself, neither of which we address. Thus, while multi-
threaded Psearchy using the pure RCU design significantly outper-
forms multi-threaded Psearchy using read/write locking, switch-
ing to a multi-process configuration proves even more effective,
achieving 49× speed-up at 80 cores, versus 25× for multi-threaded
Psearchy. Concurrent mapping operations would narrow this gap,
but obviating this workaround requires improvements in user-space
libraries as well as the kernel.

Dedup. Dedup, shown in Figure 15, deduplicates and compresses
the blocks of an input file using a pipeline of communicating
thread pools. We use a slightly modified version of Dedup that
fixes one internal scalability bottleneck and substitutes jemalloc [5]
for glibc’s malloc because, in our experiments, jemalloc consistently
outperformed and out-scaled glibc’s malloc. Dedup’s allocation
pattern is similar to Metis: frequent heap allocation causes Dedup
to mmap thousands of 4 MB–8 MB chunks and ultimately soft
fault 13 GB of memory. As a result, the lock contention for the
mmap sem is comparatively low. For read/write locking and fault
locking, the additional lock contention from page faults limits the
overall scalability, but the two RCU-based designs scale much better:

Metis user sys idle
Read/write locking 150 s 196 s 45 s
Fault locking 139 s 155 s 49 s
Hybrid locking/RCU 107 s 35 s 4 s
Pure RCU 102 s 11 s 1 s

Psearchy user sys idle
Read/write locking 114 s 177 s 283 s
Fault locking 107 s 124 s 220 s
Hybrid locking/RCU 107 s 47 s 176 s
Pure RCU 107 s 12 s 201 s

Dedup user sys idle
Read/write locking 465 s 146 s 248 s
Fault locking 567 s 35 s 239 s
Hybrid locking/RCU 426 s 18 s 93 s
Pure RCU 430 s 17 s 57 s

Table 1. Comparison of user, system, and idle time at 80 cores for
a single “job” in each concurrency design.

Read/write locking
Fault locking
Hybrid locking/RCU
Pure RCU

0

2×106

4×106

6×106

8×106

10×106

12×106

14×106

16×106

18×106

20×106

1 10 20 30 40 50 60 70 80

Pa
ge

fa
ul

ts
/s

ec

Cores

Figure 16. Microbenchmark throughput with no lock contention.

hybrid locking/RCU and pure RCU outperform read/write locking
by 60% and 70%, respectively.

In all three benchmarks, system time on 80 cores drops precipi-
tously with each increasingly concurrent address space design, as
shown in Table 1. With read/write locking, system time represents
a significant portion of each benchmark’s running time. Pure RCU
demonstrates between 88% and 94% less system time because of a
combination of reduced cache contention, less time manipulating
lock wait queues, and less time handling sleeps and wakeups.

7.3 Isolated VM performance
All three application benchmarks spend a substantial fraction of
their time performing computation in user space, making it difficult
to precisely quantify the performance gains in the virtual memory
system. We employ a microbenchmark to isolate the performance
of the VM system and closely analyze the costs and scalability of
page fault handling. Our microbenchmark uses one core to perform
mmap/munmap operations for a given fraction of time (to control
how often the mmap sem is held in write mode), while the remaining
cores continuously take soft page faults. This microbenchmark also
allows us to drive the VM system much harder than the application
benchmarks do, giving a glimpse at how applications may perform
at even higher core counts.

Figure 16 shows the base throughput of the microbenchmark
without any mmap or munmap operations. In effect, this amplifies

10

Read/write locking
Fault locking
Hybrid locking/RCU
Pure RCU

0

50,000

100,000

150,000

200,000

250,000

300,000

1 10 20 30 40 50 60 70 80

C
yc

le
s/

pa
ge

fa
ul

t

Cores

Figure 17. Microbenchmark page fault cost with no lock con-
tention.

the behavior exhibited by Metis and Dedup. Because no locks
are acquired in write mode, all non-scalability in this case is the
result of cache contention for the cache line holding the mmap sem.
Figure 17 shows the corresponding average cost of a page fault. At
10 cores, page faults take approximately 7,400 cycles in all four
designs. By 80 cores, page faults in the three lock-based designs
are more than an order of magnitude more expensive. At 80 cores,
read/write locking spends 84% of its cycles simply acquiring and
releasing the mmap sem in read mode. The pure RCU design,
however, virtually eliminates cache contention; at 80 cores, the
page faults take 8,869 cycles, demonstrating near-perfect scalability
even at 20 million page faults per second. The few additional cycles
are the result of slight non-scalability in the Linux page allocator.

Of course, any real application will also perform memory map-
ping operations. We simulate this by adjusting how frequently the
microbenchmark calls mmap/munmap. For each design, we use
enough page faulting cores to drive the design at its peak page
fault rate, both to focus on lock contention costs (excluding cache
contention costs), and to maximally stress the page fault handler.
Figure 18 shows the cost of the page fault handler as we increase the
time spent in mmap and munmap. Since each design uses a different
number of page fault cores, the base page fault cost—when no time
is spent in mmap or munmap—differs slightly, hence we normalize
to this base cost. Both read/write locking and fault locking exhibit
exponential growth as the probability of lock conflicts increases,
ultimately reaching 29× and 21× their base page fault costs, respec-
tively. Hybrid locking/RCU behaves more modestly, as the window
for conflicts between memory mapping operations and page faults
is restricted to the time the tree lock is held, which is limited to a
small fraction of the time that the mmap sem is held. The pure RCU
design again demonstrates near-constant cost, suggesting that the
design will continue scaling well on systems that have more than
80 cores.

8. Discussion
We believe the Metis, Psearchy, and Dedup benchmarks highlight
the address space concurrency issues faced by the increasingly
important class of highly-threaded, VM-intensive applications. The
pure RCU design makes Metis and Dedup scale well to 80 cores,
but Psearchy suggests the importance of future research to improve
write-side parallelism for address spaces. Applications must map
memory in order to soft fault it, and, ultimately, the serialization of
memory mapping operations will dominate any parallel component
of the virtual memory system.

Read/write locking (10 cores)
Fault locking (11 cores)

Hybrid locking/RCU (15 cores)
Pure RCU (80 cores)

0.5

1

1.5

2

2.5

3

0% 20% 40% 60% 80% 100%

N
or

m
al

iz
ed

pa
ge

fa
ul

tc
os

t

Fraction of time in mmap/munmap

Figure 18. Microbenchmark page fault cost with varying time spent
in mmap and munmap, shown relative to the cost with no concurrent
memory mapping operations.

As the results show, the BONSAI tree allows the pure RCU design
to scale at constant cost and, under highly parallel loads, achieve
substantially better performance than its locked counterparts. While
the BONSAI tree is well suited to storing memory mappings, its
design is generic and could benefit other parallel components of the
kernel as well as parallel applications. Furthermore, the derivation of
the BONSAI tree from a sequential functional data structure and its
path-copying optimization are equally applicable to other functional
data structures and may yield RCU-compatible versions of other
data structures typically protected by locks.

Likewise, little of the pure RCU design is specific to Linux.
We believe that the pure RCU approach should apply equally well
to other operating systems, and will result in similar scalability
benefits.

9. Conclusion
As core counts increase, multithreaded VM-intensive applications
can become bottlenecked by kernel operations on their shared
address space. To avoid this bottleneck, this paper has introduced
an address space design that uses RCU to manage VMAs, page
directories, and page tables and uses a new RCU-based balanced
tree, BONSAI, to manage the VMA set. Measurements on an 80 core
Linux computer show that this design scales better than stock Linux
and two other simpler but less-concurrent designs; its use of BONSAI
allows the page fault handler to run at a constant cost, independent
of the number of cores and of the memory mapping load. As this
design applies to any VM system that tracks pages using a balanced
tree, it should be applicable to many of the popular shared-memory
operating systems.

The source code for our modified Linux kernel is available at
http://pdos.csail.mit.edu/mosbench.

Acknowledgments
We thank Eddie Kohler, Paul McKenney, and Robert Morris for their
feedback. Thanks to Alex Pesterev for getting the 80 core system
used in our experiments to work. This work was partially supported
by Quanta Computer and by NSF awards 0834415 and 0915164.

References
[1] S. Adams. Implementing sets efficiently in a functional language.

Technical Report CSTR 92-10, University of Southampton, 1992.
[2] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis,

Princeton University, January 2011.

11

[3] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. D. Y. Zhang, and Z. Zhang. Corey: An
operating system for many cores. In Proc. of the 8th OSDI, December
2008.

[4] S. Boyd-Wickizer, A. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, and N. Zeldovich. An analysis of Linux scalability to many
cores. In Proc. of the 9th OSDI, Vancouver, Canada, October 2010.

[5] J. Evans. A scalable concurrent malloc (3) implementation for FreeBSD.
In Proc. of the BSDCan Conference, Ottawa, Canada, April 2006.

[6] K. Fraser. Practical lock freedom. Technical Report UCAM-CL-TR-
579, Cambridge University, 2003.

[7] K. Fraser and T. Harris. Concurrent programming without locks. ACM
Transactions on Computer Systems, 25(2), May 2007.

[8] M. Herlihy. A methodology for implementing highly concurrent data
objects. Technical Report CRL 91/10, Digital Equipment Corporation,
October 1991.

[9] P. W. Howard and J. Walpole. Relativistic red-black trees. Technical
Report 10-06, Portland State University, Computer Science Department,
2010.

[10] P. L. Lehman and S. B. Yao. Efficient locking for concurrent operations
on B-trees. ACM Transactions on Database Systems, 6:650–670,
December 1981.

[11] Linux Test Project. http://ltp.sourceforge.net/.
[12] Y. Mao, R. Morris, and F. Kaashoek. Optimizing MapReduce for

multicore architectures. Technical Report MIT-CSAIL-TR-2010-020,
MIT CSAIL, May 2010.

[13] P. E. McKenney. Exploiting Deferred Destruction: An Analysis of Read-
Copy-Update Techniques in Operating System Kernels. PhD thesis,
OGI School of Science and Engineering at Oregon Health and Sciences
University, 2004. Available: http://www.rdrop.com/users/
paulmck/RCU/RCUdissertation.2004.07.14e1.pdf.

[14] P. E. McKenney. Sleepable RCU. Available: http://lwn.net/
Articles/202847/ Revised: http://www.rdrop.com/

users/paulmck/RCU/srcu.2007.01.14a.pdf, October
2006.

[15] P. E. McKenney and J. D. Slingwine. Read-copy update: Using
execution history to solve concurrency problems. In Proc. of the
10th IASTED International Conference on Parallel and Distributed
Computing and Systems, pages 509–518, Las Vegas, NV, October 1998.

[16] P. E. McKenney and J. Walpole. Introducing technology into the Linux
kernel: a case study. SIGOPS Operating Systems Review, 42(5):4–17,
July 2008.

[17] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russell,
D. Sarma, and M. Soni. Read-copy update. In Proc. of the Ottawa
Linux Symposium, pages 338–367, July 2001.

[18] Microsoft Corp. Windows research kernel. http:
//www.microsoft.com/resources/sharedsource/
windowsacademic/researchkernelkit.mspx.

[19] J. Nievergelt and E. M. Reingold. Binary search trees of bounded
balance. In Proc. of the 4th STOC, pages 137–142, Denver, CO, 1972.

[20] W. Pugh. Concurrent maintenance of skip lists. Technical Report CS-
TR-2222, Dept. of Computer Science, University of Maryland, College
Park, 1990.

[21] QEMU. http://www.qemu.org/.
[22] S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos. Scalable

locality-conscious multithreaded memory allocation. In Proc. of the
2006 ACM SIGPLAN International Symposium on Memory Manage-
ment, Ottawa, Canada, June 2006.

[23] J. Stribling, J. Li, I. G. Councill, M. F. Kaashoek, and R. Morris.
Overcite: A distributed, cooperative CiteSeer. In Proc. of the 3rd
NSDI, San Jose, CA, May 2006.

[24] L. Wang. Windows 7 memory management, November 2009.
http://download.microsoft.com/download/7/E/7/
7E7662CF-CBEA-470B-A97E-CE7CE0D98DC2/mmwin7.
pptx.

12

