
The Collective: A Cache-Based System Management Architecture

Ramesh Chandra Nickolai Zeldovich Constantine Sapuntzakis Monica S. Lam
Computer Science Department

Stanford University
Stanford, CA 94305

{rameshch, nickolai, csapuntz, lam }@cs.stanford.edu

Abstract
This paper presents the Collective, a system that deliv-
ers managed desktops to personal computer (PC) users.
System administrators are responsible for the creation and
maintenance of the desktop environments, orvirtual ap-
pliances, which include the operating system and all in-
stalled applications. PCs run client software, called the
virtual appliance transceiver, that caches and runs the lat-
est copies of appliances locally and continuously backs up
changes to user data to a network repository. This model
provides the advantages of central management, such as
better security and lower cost of management, while lever-
aging the cost-effectiveness of commodity PCs.

With a straightforward design, this model provides a
comprehensive suite of important system functions in-
cluding machine lockdown, system updates, error recov-
ery, backups, and support for mobility. These functions
are made available to all desktop environments that run on
the x86 architecture, while remaining protected from the
environments and their many vulnerabilities. The model
is suitable for managing computers on a LAN, WAN with
broadband, or even computers occasionally disconnected
from the network like a laptop. Users can access their
desktops from any Collective client; they can also carry a
bootable drive that converts a PC into a client; finally, they
can use a remote display client from a browser to access
their desktop running on a remote server.

We have developed a prototype of the Collective sys-
tem and have used it for almost a year. We have found
the system helpful in simplifying the management of our
desktops while imposing little performance overhead.

1 Introduction
With the transition from mainframe computing to per-
sonal computing, the administration of systems shifted
from central to distributed management. With main-
frames, professionals were responsible for creating and
maintaining the single environment that all users ac-
cessed. With the advent of personal computing, users
got to define their environment by installing any soft-
ware that fit their fancy. Unfortunately, with this freedom
also came the tedious, difficult task of system manage-

ment: purchasing the equipment and software, installing
the software, troubleshooting errors, performing upgrades
and re-installing operating systems, performing backups,
and finally recovering from problems caused by mistakes,
viruses, worms and spyware.

Most users are not professionals and, as such, do not
have the wherewithal to maintain systems. As a result,
most personal computers are not backed up and not up
to date with security patches, leaving users vulnerable to
data loss and the Internet vulnerable to worms that can
infect millions of computers in minutes [16]. In the home,
the challenges we have outlined above lead to frustration;
in the enterprise, the challenges cost money.

The difficulties in managing distributed PCs has
prompted a revival in interest in thin-client computing,
both academically [15, 8] and commercially [2]. Reminis-
cent of mainframe computing, computation is performed
on computers centralized in the data center. On the user’s
desk is either a special-purpose remote display terminal
or a general-purpose personal computer running remote
display software. Unfortunately, this model has higher
hardware costs and does not perform as well. Today, the
cheapest thin clients are PCs without a hard disk, but un-
like a stand-alone PCs, a thin client also needs a server
that does the computation, increasing hardware costs. The
service provider must provision enough computers to han-
dle the peak load; users cannot improve their computing
experience by going to the store and buying a faster com-
puter. The challenge of managing multiple desktops re-
mains, even if it is centralized in the data center. Finally,
remote display, especially over slower links, cannot de-
liver the same interactivity as local applications.

1.1 Cache-based System Management

This paper presents a cache-based system management
model that combines the advantages of centralized man-
agement while taking advantage of inexpensive PCs. Our
model delivers instances of the same software environ-
ments to desktop computers automatically, thereby amor-
tizing the cost of the management. This design trades off
users’ ability to customize their own environment in re-
turn for uniformity, scalability, better security and lower
cost of management.

In our model, we separate the state in a computer into
two parts: system state and user state. The system state
consists of an operating system and all installed appli-
cations. We refer to the system state as anapplianceto
emphasize that only the administrator is allowed to mod-
ify the system function; thus, to the user the system state
defines a fixed function, just like any appliance. Note that
these appliances arevirtual appliancesbecause unlike real
appliances, they do not come with dedicated hardware.
User state consists of a user’s profile, preferences, and
data files.

Figure 1: Architecture of the Collective system

In the cache-based system management model, appli-
ances and user state are stored separately in network-
accessibleappliance repositoriesanddata repositories, as
shown in Figure 1. PCs in this model are fixed-function
devices calledvirtual appliance transceivers(VATs).

In this model, a user can walk up to any of these clients,
log in, and get access to any appliance he is entitled to.
The VAT performs the following functions:

1. authenticates users.

2. fetches and runs the latest copies of appliances lo-
cally.

3. backs up user state changes to the data repository
continuously; only administrators are allowed to up-
date appliances in the appliance repository.

4. optimizes the system by managing a cache to reduce
the amount of the data that needs to be fetched over
the network.

Because appliances run locally, rather than on some
central server, users experience performance and inter-
activity similar to their current PC environment; this ap-
proach provides the benefits of central management while
leveraging commodity PCs.

1.2 System Highlights
We have developed a prototype based on this model
which we call the Collective [14, 12]. By using x86
virtualization technology provided by the VMware GSX
Server [20], the Collective client can manage and run most

software that runs on an x86 PC. We have used the sys-
tem daily since June 2004. Throughout this period, we
have extended our system and rewritten parts of it several
times. The system that we are describing is the culmina-
tion of many months of experience. This paper presents
the design and rationale for cache-based system manage-
ment, as well as the detailed design and implementation
of the Collective. We also measure our prototype and de-
scribe our experiences with it.

Our cache-based system management model has sev-
eral noteworthy characteristics. First, the VAT is a sepa-
rate layer in the software stack devoted to management.
The VAT is protected from the appliances it manages by
the virtual machine monitor, increasing our confidence in
the VAT’s security and reliability in the face of appliance
compromise or malfunction. Finally, the VAT automati-
cally updates itself, requiring little to no management on
the part of the user.

Second, the system delivers a comprehensive suite of
critical system management functions automatically and
efficiently, including disk imaging, machine lockdown,
software updates, backups, system and data recovery, mo-
bile computing, and disconnected operation, through a
simple and unified design based on caching. Our cache
design is kept simple with the use of a versioning scheme
where every data item is referred to by a unique name. In
contrast, these management functions are currently pro-
vided by a host of different software packages, often re-
quiring manual intervention.

Third, our design presents a uniform user interface,
while providing performance and security, across com-
puters with different network connectivities and even on
computers not running the VAT software. The design
works on computers connected to a LAN or WAN with
broadband bandwidth; it even works when computers are
occasionally disconnected. It also enables a new mobility
model, where users carry a portable storage device such as
an 1.8-inch disk. With the disk, they can boot any compat-
ible PC and run the VAT. Finally, in the case where users
can only get access to a conventional PC, they can access
their environment using a browser, albeit only at remote
access speeds.

In contrast, without a solution that delivers perfor-
mance across different network connectivities, enterprises
often resort to using a complicated set of techniques as a
compromise. In a large organization, users in the main
campus may use PCs since they have enough IT staff to
manage them; remote offices may use thin clients instead,
trading performance for reduced IT staff. Employees may
manage their home PCs, installing corporate applications,
and accessing corporate infrastructure via VPN. Finally,
ad hoc solutions may be used to manage laptops, as they
are seldom connected to the network unless they are in
use.

The combination of centralized management and cheap
PCs, provided by the Collective, offers a number of prac-
tical benefits. This approach lowers the management cost
at the cost of a small performance overhead. More impor-
tantly, this approach improves security by keeping soft-
ware up to date and locking down desktops. Recovery
from failures, errors, and attacks is made possible by con-
tinuous backup. And, the user sees the same computing
environment at the office, at home, or on the road.

1.3 Paper Organization
The rest of the paper is structured as follows. Section 2
presents an overview of the system. Section 3 discusses
the design in more detail. We present quantitative evalu-
ation in section 4 and qualitative user experience in Sec-
tion 5. Section 6 discusses the related work and Section 7
concludes the paper.

2 System Overview
This section provides an overview of the Collective. We
start by presenting the data types in the system: appli-
ances, repositories and subscriptions. We then show how
the Collective works from a user’s perspective. We de-
scribe how the Collective’s architecture provides mobility
and management functions and present optimizations that
allow the Collective to perform well under different con-
nectivities.

2.1 Appliances
An appliance encapsulates a computer state into a virtual
machine which consists of the following:

• System disksare created by administrators and hold
the appliance’s operating system and applications.
As part of the appliance model, the contents of the
system disk at every boot are made identical to the
contents published by the administrator. As the ap-
pliance runs, it may mutate the disk.

• User diskshold persistent data private to a user, such
as user files and settings.

• Ephemeral diskshold user data that is not backed up.
They are used to hold ephemeral data such browser
caches and temporary files; there is little reason to
incur additional traffic to back up such data over the
network.

• A memory imageholds the state of a suspended ap-
pliance.

2.2 Repositories
Many of the management benefits of the Collective derive
from the versioning of appliances in network repositories.
In the Collective, each appliance has a repository; updates

to that appliance get published as a new version in that
repository. This allows the VAT to automatically find and
retrieve the latest version of the appliance.

To keep consistency simple, versions are immutable.
To save space and to optimize data transfer, we use copy-
on-write (COW) disks to express the differences between
versions.

2.3 Subscriptions
Users have accounts, which are used to perform access
control and keep per-user state. Associated with a user’s
account is the user’s Collective profile which exists on net-
work storage. In the user’s Collective profile is a list of
appliances that the user has access to. When the user first
runs an appliance, asubscriptionis created in the profile
to store the user state associated with that appliance.

To version user disks, each subscription in the user’s
Collective profile contains a repository for the user disks
associated with the appliance. The first version in the
repository is a copy of an initial user disk published in
the appliance repository.

Other state associated with the subscription is stored
only on storage local to the VAT. When an appliance
starts, a COW copy of the system disk is created locally.
Also, an ephemeral disk is instantiated, if the appliance
requires one but it does not already exist. When an ap-
pliance is suspended, a memory image is written to the
VAT’s storage.

Since we do not transfer state between VATs directly,
we cannot migrate suspended appliances between VATs.
This is mitigated by the user’s ability to carry their VAT
with them on a portable storage device.

To prevent the complexity of branching the user disk,
the user should not start a subscribed appliance on a VAT
while it is running on another VAT. So that we can, in
many cases, detect this case and warn the user, a VAT will
attempt to acquire and hold a lock for the subscription
while the appliance is running.

2.4 User Interface
The VAT’s user interface is very simple–it authenticates
the user and allows him to perform a handful of operations
on appliances. On bootup, the VAT presents a Collective
log-in window, where a user can enter his username and
password. The system then presents the user with a list of
appliances that he has access to, along with their status.
Choosing from a menu, the user can perform any of the
operations on his appliances:

• start boots the latest version of the appliance, or if
a suspended memory image is available locally, re-
sumes the appliance.

• stopshuts down the appliance.

• suspendsuspends the appliance to a memory image.

• resetdestroys all ephemeral disks and the memory
image but retains the user disks

• deletedestroys the subscription including the user
disks

• user disk undoallows the user to go back to a previ-
ous snapshot of their user disk.

• publishallows the administrator to save the current
version of the system disk as the latest version of the
appliance.

When a user starts an appliance, the appliance takes
over the whole screen once it runs; at any time, the user
can hit a hot key sequence (Ctrl-Alt-Shift) and return to
the list of appliances to perform other operations. The
VAT user interface also indicates the amount of data that
remains to be backed up from the local storage device.
When this hits zero, the user can log out of the VAT and
safely shift to using the virtual machines on another de-
vice.

2.5 Management Functions
We now discuss how the various management functions
are implemented using caching and versioning.

2.5.1 System Updates

Desktop PCs need to be updated constantly. These up-
grades include security patches to operating systems or
installed applications, installations of new software, up-
grades of the operating system to a new version, and fi-
nally re-installion of the operating system from scratch.
All software upgrades, be they small or big, are accom-
plished in our system with the same mechanism. The sys-
tem administrator prepares a new version of the appliance
and deposits it in the appliance repository. The user gets
the latest copy of the system disks the next time they re-
boot the appliance. The VAT can inform the user that a
new version of the system disk is available, encouraging
the user to reboot, or the VAT can even force a reboot to
disallow use of the older version. From a user’s stand-
point, upgrade involves minimal work; they just reboot
their appliances. Many software updates and installations
on Windows already require the computer to be rebooted
to take effect.

This update approach has some advantages over pack-
age and patch systems like yum [24], RPM [1], Windows
Installer [22], and Windows Update. First, patches may
fail on some users’ computers because of interactions with
user-installed software. Our updates are guaranteed to
move the appliance to a new consistent state. Users run-
ning older versions are unaffected until they reboot. Even
computers that have been off or disconnected get the latest
software updates when restarted; with many patch man-
agement deployments, this is not the case. Finally, our

update approach works no matter how badly the software
in the appliance is functioning, since the VAT is protected
from the appliance software. However, our model re-
quires the user to subscribe to an entire appliance; patch-
ing works with individual applications and integrates well
in environments where users mix and match their applica-
tions.

Fully automating the update process, the VAT itself is
managed as an appliance. It automatically updates itself
from images hosted in a repository. This is described in
more detail in Section 3. By making software updates
easy, we expect environments to be much more up to date
with the Collective and hence more secure.

2.5.2 Machine Lockdown

Our scheme locks down user desktops because changes
made to the system disks are saved in a new version of the
disk and are discarded when the appliance is shut down.
This means that if a user accidentally installs undesirable
software like spyware into the system state, these changes
are wiped out.

Of course, undesirable software may still install itself
into the user’s state. Even in this case, the Collective ar-
chitecture provides the advantage of being able to reboot
to an uncompromised system image with uncompromised
virus scanning tools. If run before accessing ephemeral
and user data, the uncompromised virus scanner can stay
uncompromised and hopefully clean the changed state.

2.5.3 Backup

The VAT creates a COW snapshot of the user disk when-
ever the appliance is rebooted and also periodically as the
appliance runs. The VAT backs up the COW disks for
each version to the user repository. The VAT interface
allows users to roll back changes made since the last re-
boot or to return to other previous versions. This allows
the user to recover from errors, no matter the cause, be it
spyware or user error.

When the user uses multiple VATs to access his appli-
ances without waiting for backup to complete, potential
for conflicts in the user disk repository arises. The backup
protocol ensures that only one VAT can upload user disk
snapshots into the repository at a time. If multiple VATs
attempt to upload user disks at the same time, the user
is first asked to choose which VAT gets to back up into
the subscription and then given the choice of terminating
the other backups or creating additional subscriptions for
them.

If an appliance is writing and overwriting large quan-
tities of data, and there is insufficient network band-
width for backup, snapshots can accumulate at the client,
buffered for upload. In the extreme, they can potentially
fill the disk. We contemplate two strategies to deal with
accumulating snapshots: collapse multiple snapshots to-

gether and reduce the frequency of snapshots. In the worst
case, the VAT can stop creating new snapshots and col-
lapse all of the snapshots into one; the amount of disk
space taken by the snapshot is then bounded by the size of
the virtual disk.

2.5.4 Hardware Management

Hardware management becomes simpler in the Collective
because PCs running the VAT are interchangeable; there
is no state on a PC that cannot be discarded. Deploying
hardware involves loading PCs with the VAT software.
Provisioning is easy because users can get access to their
environments on any of the VATs. Faulty computers can
be replaced without manually customizing the new com-
puter.

2.6 Optimizations for Different Network
Connectivities

To reduce network and server usage and improve perfor-
mance, the VAT includes a large on-disk cache, on the
order of gigabytes. The cache keeps local copies of the
system and user disk blocks from the appliance and data
repositories, respectively. Besides fetching data on de-
mand, our system also prefetches data into the cache. To
ensure good write performance even on low-bandwidth
connections, all appliance writes go to the VAT’s local
disk; the backup process described in section 2.5.3 sends
updates back in the background.

The cache makes it possible for this model to perform
well under different network connectivities. We shall
show below how our system allows users to access their
environments on any computer, even computers with no
pre-installed VAT client software, albeit with reduced per-
formance.

2.6.1 LAN

On low-latency, high bandwidth (e.g., 100 Mbps) net-
works, the system performs reasonably well even if the
cache is empty. Data can be fetched from the repositories
fast enough to sustain good responsiveness. The cache is
still valuable for reducing network and server bandwidth
requirements. The user can easily move about in a LAN
environment, since it is relatively fast to fetch data from a
repository.

2.6.2 WAN with Broadband

By keeping a local copy of data from the repository, the
cache reduces the need for data accesses over the net-
work. This is significant because demand-fetching every
block at broadband bandwidth and latency would make
the system noticeably sluggish to the user. We avoid this
worst-case scenario with the following techniques. First,
at the time the VAT client software is installed on the hard
disk, we also populate the cache with blocks of the ap-
pliances most likely to be used. This way only updates

need to be fetched. Second, the VAT prefetches data in
the background whenever updates for the appliances in
use are available. If, despite these optimizations, the user
wishes to access an appliance that has not been cached,
the user will find the application sluggish when using a
feature for the first time. The performance of the feature
should subsequently improve as its associated code and
data get cached. In this case, although the system may
try the user’s patience, the system is guaranteed to work
without the user knowing details about installing software
and other system administration information.

2.6.3 Disconnected Operation with Laptops

A user can ensure access to a warm cache of their appli-
ances by carrying the VAT on a laptop. The challenge here
is that a laptop is disconnected from the network from
time to time. By hoarding all the blocks of the appliances
the user wishes to use, we can keep operating even while
disconnected.

2.6.4 Portable VATs

The self-containment of the VAT makes possible a new
model of mobility. Instead of carrying a laptop, we can
carry the VAT, with a personalized cache, on a bootable,
portable storage device. Portable storage devices are fast,
light, cheap, and small. In particular, we can buy a 1.8-
inch, 40GB, 4200 rpm portable disk, weighing about 2
ounces, for about $140 today. Modern PCs can boot from
a portable drive connected via USB.

The portable VAT has these advantages:

1. Universality and independence of the computer
hosts. Eliminating dependences on the software of
the hosting computer, the device allows us to con-
vert any x86 PC into a Collective VAT. This approach
leaves the hosting computer undisturbed, which is a
significant benefit to the hosting party. Friends and
relatives need not worry about their visitors modi-
fying their computing environments accidentally, al-
though malicious visitors can still wreak havoc on
the disks in the computers.

2. Performance. The cache in the portable VAT serves
as a network accelerator. This is especially impor-
tant if we wish to use computers on low-bandwidth
networks.

3. Fault tolerance. Under typical operation, the VAT
does not contain any indispensable state when not
in use; thus, in the event the portable drive is lost or
forgotten, the user gets access to his data by inserting
another generic VAT and continuing to work, albeit
at a slower speed.

4. Security and privacy. This approach does not dis-
turb the hosting computer nor does it leave any trace

of its execution on the hosting computer. Data on
the portable drive can be encrypted to maintain se-
crecy if the portable drive is lost or stolen. However,
there is always the possibility that the firmware of
the computer has been doctored to spy on the com-
putations being performed. Trusted computing tech-
niques [18, 5] can be applied here to provide more
security; hardware could in theory attest to the drive
the identity of the firmware.

2.6.5 Remote Display

Finally, in case the users do not have access to any VATs,
they can access their environments using remote display.
We recreate a user experience similar to the one with the
VAT; the user logs in, is presented with a list of appliances
and can click on them to begin using them. The appli-
ances are run on a server and a window appears with an
embedded Java remote display applet that communicates
with the server.

3 Design of the VAT
In this section, we present the design of the appliance
transceiver. The VAT’s major challenges include running
on as many computers as possible, automatically updating
itself, authenticating users and running their appliances,
and working well on slow networks.

3.1 Hardware Abstraction
We would like the VAT image to run on as many differ-
ent hardware configurations as possible. This allows users
with a bootable USB drive to access their state from al-
most any computer that they might have available to them.
It also reduces the number of VAT images we need to
maintain, simplifying our administration burden.

To build a VAT that would support a wide range of
hardware, we modified KNOPPIX [6], aLive CDversion
of Linux that automatically detects available hardware at
boot time and loads the appropriate Linux drivers. KNOP-
PIX includes most of the drivers available for Linux today.

KNOPPIX’s ability to quickly auto-configure itself to a
computer’s hardware allows the same VAT software to be
used on many computers without any per-computer modi-
fication or configuration, greatly simplifying the manage-
ment of an environment with diverse hardware. We have
found only one common situation where the VAT cannot
configure itself without the user’s help: to join a wireless
network, the user may need to select a network and pro-
vide an encryption key.

If a VAT successfully runs on a computer, we can be
reasonably sure the appliances running on it will. The
appliances run by the VAT see a reasonably uniform set
of virtual devices; VMware GSX server takes advantage
of the VAT’s device drivers to map these virtual devices to
a wide range of real hardware devices.

3.2 User Authentication
To maintain security, users must identify themselves to
the VAT and provide credentials that will be used by the
VAT to access their storage on their behalf. As part of log-
ging in, the user enters his username and password. The
VAT then uses SSH and the password to authenticate the
user to the server storing the user’s Collective profile. To
minimize the lifetime of the user’s password in memory,
the VAT sets up a key pair with the storage server so that
it can use a private key, rather than a password, to access
storage on behalf of the user.

Disconnected operation poses a challenge, as there is
no server to contact. However, if a user has already logged
in previously, the VAT can authenticate him. When first
created, the private key mentioned in the previous para-
graph is stored encrypted with the user’s password. On
a subsequent login, if the password entered successfully
decrypts the private key, the user is allowed to login and
access the cached appliances and data.

3.3 VAT Maintenance
As mentioned earlier, the VAT is managed as an appliance,
and needs zero maintenance from the end user; it automat-
ically updates itself from a repository managed by a VAT
administrator.

For most problems with the VAT software, a reboot re-
stores the software to a working state. This is because the
VAT software consists largely of a read-only file system
image. Any changes made during a session are captured
in separate file systems on a ramdisk. As a result, the VAT
software does not drift from the published image.

All VATs run an update process which checks a reposi-
tory for new versions of the VAT software and downloads
them to the VAT disk when they become available. To
ensure the integrity and authenticity of the VAT software,
each version is signed by the VAT publisher. The reposi-
tory location and the public key of publisher are stored on
the VAT disk.

After downloading the updated image, the update pro-
cess verifies the signature and atomically changes the boot
sector to point to the new version. To guarantee progress,
we allocate enough room for three versions of the VAT
image: the currently running version, a potentially newer
version that is pointed to by the boot sector which will be
used at next reboot, and an even newer, incomplete ver-
sion that is in the process of being downloaded or verified.

The VAT image is about 350MB uncompressed; down-
loading a completely new image wastes precious network
capacity on broadband links. To reduce the size to about
160MB, we use thecloop tools that come with KNOP-
PIX to generate a compressed disk image; by using the
cloop kernel driver, the VAT can mount the root file sys-
tem from the compressed file system directly. Even so, we
expect most updates to touch only a few files; transferring

an entire 160MB image is inefficient. To avoid transfer-
ring blocks already at the client, the update process uses
rsync; for small changes, the size of the update is reduced
from 160MB to about 10MB.

3.4 Storage Access

Our network repositories have the simplest layout we
could imagine; we hope this will let us use a variety of
access protocols. Each repository is a directory; each ver-
sion is a subdirectory whose name is the version number.
The versioned objects are stored as files in the subdirec-
tories. Versions are given whole numbers starting at 1.
Since some protocols (like HTTP) have no standard di-
rectory format, we keep alatest file in the repository’s
main directory that indicates the highest version number.

To keep consistency simple, we do not allow a file
to be changed once it has been published into a reposi-
tory. However, it should be possible to reclaim space of
versions that are old; as such, files and versions can be
deleted from the repository. Nothing prevents the deletion
of an active version; the repository does not keep track of
the active users.

When reading from network storage, we wanted a sim-
ple, efficient protocol that could support demand paging
of large objects, like disk images. For our prototype, we
use NFS. NFS has fast, reliable servers and clients. To
work around NFS’s poor authentication, we tunnel NFS
over SSH.

While demand paging a disk from the repository, we
may become disconnected. If a request takes too long to
return, the disk drivers in the appliance’s OS will timeout
and return an I/O error. This can lead to file system errors
which can cause the system to panic. In some cases, sus-
pending the OS before the timeout and resuming it once
we have the block can prevent these errors. A better solu-
tion is to try to make sure this does not happen in the first
place by aggressively caching blocks; we will discuss this
approach more in Section 3.6.

We also use NFS to write to network storage. To atom-
ically add a new version to a repository, the VAT first cre-
ates and populates the new version under a one-time di-
rectory name. As part of the process, it places a nonce in
the directory. The VAT then renames the directory to its
final name and checks the nonce to see if it succeeded.

We would also like to set the priority of the writes to
user data repositories with respect to other network traf-
fic. Currently, the VAT approximates this by mounting the
NFS server again on a different mount point; this in turn
uses a separate TCP connection, which is given a differ-
ent priority. Another consideration is that when an NFS
server is slow or disconnected, the NFS in-kernel client
will buffer writes in memory, eventually filling memory
with dirty blocks and degrading performance. To limit

the quantity of dirty data, the VAT performs an fsync after
every 64 kilobytes of writes to the user data repository.

3.5 Caching
Our cache is designed to mask the high latency and low
bandwidth of wide-area communication by taking advan-
tage of large, persistent local storage, like hard disks and
flash drives. At the extreme, the cache allows the client to
operate disconnected.

COW disks can be gigabytes in size; whole file caching
them would lead to impractical startup times. On the other
hand, most of the other data in our system, like the virtual
machine description, is well under 25 kilobytes. As a re-
sult, we found it easiest to engineer two caches: a small
object cache for small data and meta-data and a COW
cache for COW disk blocks.

To simplify disconnected operation, small objects, like
the user’s list of appliances or the meta-data associated
with a repository, are replicated in their entirety. All the
code reads the replicated copy directly; a background pro-
cess periodically polls the servers for updates and inte-
grates them into the local replica. User data snapshots,
which are not necessarily small, are also stored in their
entirety before being uploaded to the server.

The COW cache is designed to cache immutable ver-
sions of disks from repositories; as such the name of a
disk in the cache includes an ID identifying the repository
(currently the URL), the disk ID (currently the disk file
name), and the version number. To name a specific block
on a disk, the offset on disk is added. Since a data block
can change location when COW disk chains are collapsed,
we use the offset in the virtual disk, not the offset in the
COW disk file.

One of the challenges of on-disk data structures is deal-
ing with crashes, which can happen at any time, leading to
partial writes and random data in files. With a large cache,
scanning the disk after a crash is unattractive. To cope
with partial writes and other errors introduced by the file
system, each 512-byte sector stored in the cache is pro-
tected by an MD5 hash over its content and its address. If
the hash fails, the cache assumes the data is not resident
in the cache.

A traditional challenge with file caches has been invali-
dation; however, our cache needs no invalidation protocol.
The names used when storing and retrieving data from the
cache include the version number; since any given version
of an object is immutable, no invalidation is necessary.

Our cache implementation does not currently make an
effort to place sequential blocks close to each other on
disk. As a result, workloads that are optimized for sequen-
tial disk access perform noticeably slower with our cache,
due to the large number of incurred seeks. One such com-
mon workload is system bootup; we have implemented a
bootup block optimizationfor this case. Since the block

access pattern during system bootup is highly predictable,
a trace of the accessed blocks is saved along with each
virtual appliance. When an appliance is started, the trace
is replayed, bringing the blocks into the buffer cache be-
fore the appliance OS requests them. This optimization
significantly reduces bootup time. A more general ver-
sion of this technique can be applied to other predictable
block access patterns, such as those associated with start-
ing large applications.

3.6 Prefetching

To minimize cache misses, the VAT runs a prefetcher pro-
cess to fetch useful appliance blocks in the background.
The prefetcher checks for updates to appliances used by
the VAT user, and populates the cache with blocks from
the updated appliances. One optimization is to prioritize
the blocks using access frequency so that the more impor-
tant data can be prefetched first.

The user can use an appliance in disconnected mode
by completely prefetching a version of an appliance into
the cache. The VAT user interface indicates to the user
what versions of his appliances have been completely
prefetched. The user can also manually issue a command
to the prefetcher if he explicitly wants to save a complete
version of the appliance in the cache.

The prefetcher reduces interference with other pro-
cesses by rate-limiting itself. It maintains the latencies of
recent requests and uses these to determine the extent of
contention for network or disk resources. The prefetcher
halves its rate if the percentage of recent requests expe-
riencing a high latency exceeds a threshold; otherwise, it
doubles its rate when it finds a large percentage experi-
ence a low latency. If none of these apply, it increases or
decreases request rate by a small constant based on the
latency of the last request.

Prefetching puts spare resources to good use by utiliz-
ing them to provide better user experience in the future:
when a user accesses an appliance version for the first
time, it is likely that the relevant blocks would already be
cached. Prefetching hides network latency from the appli-
ance, and better utilizes network bandwidth by streaming
data rather than fetching it on demand.

4 Evaluation
We provide some quantitative measurements of the sys-
tem to give a sense of how the system behaves. We per-
form four sets of experiments. We first use a set of bench-
marks to characterize the overhead of the system and the
effect of using different portable drives. We then present
some statistics on how three appliances we have created
have evolved over time. Next, we evaluate prefetching.
We show that a small amount of data accounts for most
of the accesses, and that prefetching can greatly improve

the responsiveness of an interactive workload. Finally, we
study the feasibility of continuous backups.

4.1 Run-Time Performance
We first establish some basic parameters of our system by
running a number of benchmarks under different condi-
tions. All of the experiments, unless noted otherwise, are
run on 2.4GHz Pentium IV machines with 1GB of mem-
ory and a 40GB Hitachi 1.8” hard drive connected via
Prolific Technology’s PL-2507 USB-to-IDE bridge con-
troller. VAT software running on the experimental ma-
chines is based on Linux kernel 2.6.11.4 and VMware
GSX server version 3.1. The file server is a 2.4GHz
Pentium IV with 1GB of memory and a Linux software
RAID, consisting of four 160GB IDE drives. We use
FreeBSD’sdummynet[11] network simulator to compare
the performance of our system over a 100 Mbps LAN to
that over a 1.5 Mbps downlink / 384 Kbps uplink DSL
connection with 40 msec round-trip delay.

4.1.1 Effects of Caching

To evaluate caching, we use three repeatable workloads:
bootup and shutdown of a Linux VM, bootup and shut-
down of a Windows XP VM, and building the Linux
2.4.23 kernel in a VM. The runtime of each workload is
measured in different network and cache configurations
to illustrate how caching and network connectivity affect
performance. All workloads are run with both an empty
and a fully prefetched initial cache. We also repeat the
workloads with a fully prefetched cache but without the
bootup block optimization, to show the optimization’s ef-
fect on startup performance.

By running the same virtual machine workloads on an
unmodified version of VMware’s GSX server, we quan-
tify the benefits and overheads imposed by the Collective
caching system. In particular, we run two sets of exper-
iments using unmodified VMware without the Collective
cache:

• Local, where the entire VM is copied to local disk
and executes without demand-fetching. The COW
disks of each VM disk are collapsed into a flat disk
for this experiment. We expect this to provide a
bound on VMware performance.

• NFS, where the VM is stored on an NFS file server
and is demand-fetched by VMware without addi-
tional caching. This is expected to be slow in the
DSL case and shows the need for caching.

Figure 2 summarizes the performance of these bench-
marks. Workloads running with a fully prefetched cache
are slower than thelocal workload, due to additional seek
overhead imposed by the layout of blocks in our cache.
The bootup block prefetching optimization, described in

Section 3.5, largely compensates for the suboptimal block
layout.

As expected, the performance of our workloads is bad
in both the NFS and the empty cache scenario, especially
in the case of a DSL network, thus underscoring the need
for caching.

0

1

2

3

4

5

6

7

LAN DSL LAN DSL LAN DSL

Windows
reboot

Linux reboot Kernel build

N
or

m
al

iz
ed

 R
un

tim
e

Local

Fully prefetched
cache
.. without bootup
blocks
Empty cache

NFS

Figure 2: Runtime of workload experiments on different cache con-
figurations when run over a 100 Mbps LAN, and a simulated DSL link
with 1.5 Mbps downlink / 384 Kbps uplink and 40 msec RTT latency.
The runtimes are normalized to the runtime in the local experiment. The
local runtimes are 64 sec, 32 sec, and 438 sec, respectively for the Win-
dows reboot, Linux reboot, and Linux kernel build experiments.

4.1.2 Effects of disk performance

As a first test to evaluate the performance of different
disks, we measured the time taken to boot the VAT soft-
ware on an IBM Thinkpad T42p laptop, since our standard
experimental desktop machine did not have USB 2.0 sup-
port in its BIOS. The results, shown in the first column of
Figure 3 indicate that the VAT boot process is reasonably
fast across different types of drives we tried.

For our second test, we run the same micro-benchmark
workloads as above; to emphasize disk performance
rather than network performance, the VMs are fully
prefetched into the cache, and the machines are connected
over a 100Mbps LAN. The results are shown in Figure 3.
The flash drive performs well on this workload, because
of its good read performance with zero seek time, but
has limited capacity, which would prevent it from running
larger applications well. The microdrive is relatively slow,
largely due to its high seek time and rotational latency. In
our opinion, the 1.8” hard drive offers the best price / per-
formance / form factor combination.

4.2 Maintaining Appliances
We have created and maintained three virtual machine ap-
pliances over a period of time:

• a Windows XP environment. Over the course of half
a year, the Windows appliance has gone through two
service packs and many security updates. The ap-

VAT Windows Linux Kernel
startup reboot reboot build

Lexar 1GB Flash Drive 53 129 42 455
IBM 4GB Microdrive 65 158 53 523
Hitachi 40GB 1.8” Drive 61 84 43 457
Fujitsu 60GB 2.5” Drive 52 65 40 446

Figure 3:Performance characteristics of four different VAT disks. All
the numbers are in seconds. The first column shows the VAT boot times
on an IBM Thinkpad T42p, from the time BIOS transfers control to the
VAT’s boot block to the VAT being fully up and running. In all cases
the BIOS takes an additional 8 seconds initializing the system before
transferring control to the VAT. The rest of the table shows results for
the micro-benchmarks run with fully-primed caches when run over a
100 Mbps network.

pliance initially contained Office 2000 and was up-
graded to Office 2003. The appliance includes a
large number of applications such as Adobe Photo-
Shop, FrameMaker, and Macromedia DreamWeaver.

• a Linux environment, based on Red Hat’s Fedora
Core, that uses NFS to access our home directories
on our group file server. Over a period of eight
months, the NFS Linux appliance required many
security updates, which replaced major subsystems
like the kernel and X server. Software was added
to the NFS Linux appliance as it was found to be
needed.

• a Linux environment also based on Fedora, that
stores the user’s home directory in a user disk. This
Linux appliance included all the programs that came
with the distribution and was therefore much larger.
We used this appliance for two months.

Some vital statistics of these appliances are shown in
Figure 4. We show the number of versions created, either
due to software installations or security patches. Changes
to the system happen frequently; we saved a lot of time by
having to just update one instance of each appliance.

Appliance Number of Total Active Cache
versions size size size

Windows XP 31 16.5 4.5 3.1
NFS Linux 20 5.7 2.8 1.4
User-disk Linux 8 7.0 4.9 3.7

Figure 4:Statistics of three appliances. Sizes are in GB.

We also measure the size of all the COW disks for each
appliance (“Total size”) and the size of the latest version
(“Active size”). The last column of the table, “Cache
size”, shows an example of the cache size of an active
user of each appliance. We observe from our usage that
the cache size grows quickly and stabilizes within a short
amount of time. It grows whenever major system updates
are performed and when new applications are used for the
first time. The sizes shown here represent all the blocks
ever cached and may include disk blocks that may have

since been made obsolete. We have not needed to evict
any blocks from our 40GB disks.

4.3 Effectiveness of Prefetching
In the following, we first measure the access profile to es-
tablish that prefetching a small amount of data is useful.
Second, we measure the effect of prefetching on the per-
formance of an interactive application.

4.3.1 Access Profile

In this experiment, we measure the access profile of appli-
ance blocks, to understand the effectiveness of prefetching
based on the popularity of blocks. We took 15 days of
usage traces from 9 users using the three appliances de-
scribed above in their daily work. Note that during this
period some of the appliances were updated, so the total
size of data accessed was greater than the size of a single
active version. For example, the Windows XP appliance
had an active size of 4.5 GB and seven updates of 4.4 GB
combined, for a total of 8.9 GB of accessible appliance
data.

Figure 5 shows each appliance’s effective size, the size
of all the accesses to the appliance in the trace, and the
size of unique accesses. The results suggest that only a
fraction of the appliance data is ever accessed by any user.
In this trace, users access only 10 to 30% of the accessible
data in the appliances.

Appliance Accessible Accesses Unique data
Size in Traces Accessed

Windows XP 8.9 GB 31.1 GB 2.4 GB
NFS Linux 3.4 GB 6.8 GB 1.0 GB
User-disk Linux 6 GB 5.9 GB 0.5 GB

Figure 5:Statistics of appliances in the trace.

Figure 6 shows the percentage of accesses that are satis-
fied by the cache (Y-axis) if a given percentage of the most
popular blocks are cached (X-axis). The results show that
a large fraction of data accesses are to a small fraction of
the data. For example, more than 75% of data accesses in
the Windows XP appliance are to less than 20% of the ac-
cessed data, which is about 5% of the total appliance size.
These preliminary results suggest that popularity of ac-
cessed appliance data is a good heuristic for prefetching,
and that prefetching a small fraction of the appliance’s
data can significantly reduce the chances of a cache miss.

4.3.2 Interactive Performance

The responsiveness of an interactive application can be
severely affected by cache miss delays. Our next experi-
ment attempts to measure the effects of prefetching on an
application’s response time.

To simulate interactive workloads, we created a
VNC [10] recorder to record user mouse and keyboard
input events, and a VNCplayer to play them back to re-
produce user’s actions [25]. Using VNC provides us with

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 o

f d
at

a
ac

ce
ss

es
 fo

un
d

in
 c

ac
he

 % of accessed appliance blocks prefetched

Microsoft
NFS-based Linux

User-disk-based Linux

Figure 6: Block access profile: cache hit rate as a function of
prefetched appliance data. Most frequently used appliance data
is prefetched first.

a platform-independent mechanism for interacting with
the desktop environment. Furthermore, it allows us to use
VMware’s built-in VNC interface to the virtual machine
console.

Other tools [19, 23] try to do this, but play back is not
always correct when the system is running significantly
slower (or faster) than during recording. This is espe-
cially true for mouse click events. To reliably replay user
actions, our VNC recorder takes screen snapshots along
with mouse click events. When replaying input events,
the VNC player waits for the screen snapshot taken dur-
ing recording to match the screen contents during replay
before sending the mouse click.

Our replay works only on systems with little or no non-
deterministic behavior. Since we use virtual machines, we
can easily ensure that the initial state is the same for each
experiment.

We use the Windows XP appliance to record a VNC
session of a user creating a PowerPoint presentation for
approximately 8 minutes in a LAN environment. This ses-
sion is then replayed in the following experimental config-
urations:

• Local: the entire appliance VM is copied to the VAT
disk and executed with unmodified VMware, without
demand-fetching or caching.

• Prefetched: some of the virtual machine’s blocks are
prefetched into the VAT’s cache, and the VM is then
executed on top of that cache. The VAT is placed
behind a simulated 1.5 Mbps / 384 Kbps DSL con-
nection.

For the prefetched experiments, we asked four users
to use various programs in our appliance, to model other
people’s use of the same appliance; their block access pat-
terns are used for prefetching blocks in the experiment.

Prefetching measures the amount of data transferred over
the network; due to compression, the amount of raw disk
data transferred is approximately 1.6 times more. The
amount of prefetching goes up to a maximum of 420 MB,
which includes all of the blocks accessed in the appliance
by our users.

The total runtimes for the replayed sessions are within
approximately 5% of each other – the additional latency
imposed by demand-fetching disk blocks over DSL is ab-
sorbed by long periods of user think time when the sys-
tem is otherwise idle. To make a meaningful comparison
of the results, we measure the response time latency for
each mouse click event, and plot the distribution of re-
sponse times over the entire workload in Figure 7. For
low response times, the curves are virtually indistinguish-
able. This region of the graph corresponds to events that
do not result in any disk access, and hence are quick in
all the scenarios. As response time increases, the curves
diverge; this corresponds to events which involve access-
ing disk – the system takes noticeably longer to respond
in this case, when disk blocks need to be demand-fetched
over the network. The figure shows that PowerPoint run-
ning in the Collective is as responsive as running in a local
VM, except for times when new features have to be loaded
from disk – similar to Windows taking a while to start any
given application for the first time.

The most commonly accessed blocks are those used
in the bootup process. This experiment only measures
the time taken to complete the PowerPoint workload af-
ter the system has been booted up, and therefore the ben-
efit of prefetching the startup blocks is not apparent in
the results shown in the figure. However, prefetching the
startup blocks (approximately 100 MB) improves startup
time from 391 seconds in the no prefetching case to 127
seconds when 200 MB of data is prefetched.

The results show that prefetching improves interactive
performance. In the case of full prefetching, the perfor-
mance matches that of a local VM. Partial prefetching is
also beneficial – we can see that prefetching 200 MB sig-
nificantly improves the interactive performance of Power-
Point.

4.4 Feasibility of Online Backup

Ideally, in our system, user data should always be backed
up onto network storage. To determine whether online
backup works for real workloads, we collected usage
traces for three weeks on personal computers of ten users
running Windows XP. These users included office work-
ers, home users, and graduate students. The traces contain
information on disk block reads and writes, file opens and
start and end of processes. We also monitored idle times
of keyboard and mouse; we assume the user to be idle if
the idle time exceeds five minutes.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

P
er

ce
nt

ag
e

of
 R

es
po

ns
e

T
im

es

Response Time (seconds)

Local
420 MB prefetch
200 MB prefetch

0 MB prefetch

Figure 7: CDF plot of response times observed by the user
during a PowerPoint session, for different levels of prefetching.

We expect that in our system the user would log out
and possibly shut down his VAT soon after he completes
his work. So, the measure we are interested in is whether
there is any data that is not backed up when he becomes
idle. If all the data is backed up, then the user can log
in from any other VAT and get his most recent user data;
if the user uses a portable VAT, he could lose it with no
adverse effects.

To quantify this measure we simulated the usage traces
on our cache running over a 384 Kbps DSL uplink. To
perform the simulation we divided the disk writes from
the usage data into writes to system data, user data, and
ephemeral data. These correspond to the system disk, user
disk, and ephemeral disk that were discussed earlier. Sys-
tem data consists of the writes that are done in the normal
course by an operating system that need not be backed up.
Examples of this include paging, defragmentation, NTFS
metadata updates to system disk, and virus scans. User
data consists of the data that the user would want to be
backed up. This includes email documents, office doc-
uments, etc., We categorize internet browser cache, and
media objects such as mp3 files, that are downloaded from
the web as ephemeral data and do not consider them for
backup. In our traces there were a total of about 300GB
worth of writes of which about 3.3% were to user data,
3.4% were to ephemeral data and the rest to program data.
Users were idle 1278 times in the trace, and in our simu-
lation, backup stops during idle periods. We estimate the
size of dirty data in the cache when users become idle.

The results are presented in Figure 8. The x-axis shows
the size of data that is not backed up, and the y-axis shows
the percentage of idle periods. From the figure we see that
most of the time there is very little data to be backed up by
the time the user becomes idle. This suggests that interac-
tive users have large amounts of think time and generate
little backup traffic. This also shows that online backup,

as implemented in the Collective, works well even on a
DSL link. Even in the worst case, the size of dirty data
is only about 35 MB, which takes less than 15 minutes to
backup on DSL.

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30 35

C
um

ul
at

iv
e

%
 o

f I
dl

e
In

st
an

ce
s

Data Not Backed Up (MB)

Figure 8: Size of data that is not backed up when a user be-
comes idle. The graph shows the fraction of times the user would
have less than a certain amount of dirty data in his cache at the
end of his session.

The results presented in this section illustrate that the
system performs well over different network connections,
and that it provides a good interactive user experience.
Further, the results support our use of prefetching for re-
ducing cache misses, and show that continuous backup is
feasible for most users.

5 Experiences
We have been using the Collective for our daily work
since June 2004. Based on this and other experiences,
we describe how the Collective helped reduce the burden
of administering software and computers.

5.1 Uses of the System
At first, members of our research group were using the
prototype for the sake of understanding how our system
behaves. As the system stabilized, more people started
using the Collective because it worked better than their
current setup. The following real-life scenarios we en-
countered illustrate some of the uses of our system:

Deploying new equipment.Before the Collective, when
we needed to set up a new desktop or laptop, it would
take a couple of hours to install the operating system, ap-
plications, and configure the computer. By plugging in
and booting from USB disk containing the VAT, we were
able to start using the computer immediately, starting up
appliances we had previously used on other computers.
We also used the VAT to configure the new computer’s
internal hard drive to be a VAT; all it takes is one user
command and, in less than 5 minutes, the computer is as-
similated into the Collective.

Fixing broken software setups.In one case, a student
adopted the Collective after he botched the upgrade of the

Linux kernel on his laptop. As a result of the failed up-
grade, the laptop did not even boot. In other cases, we
had lent machines to other groups and received them back
with less than useful software setups. The Collective al-
lowed us to resume work quickly by placing a VAT on the
computer.

Distributing a complex computing environment.Over
the summer, two undergraduates participated in a com-
piler research project that required many tools including
Java, Eclipse, the JoeQ Java compiler, BDD libraries, etc.
Since the students were not familiar with those tools, it
would have taken each of the students a couple of days
to create a working environment. Instead, an experienced
graduate student created an appliance that he shared with
both students, enabling both of them to start working on
the research problems.

Using multiple environments.Our Linux appliance
users concurrently start up a Windows appliance for the
occasional tasks, like visiting certain web pages and run-
ning Powerpoint, that work better or require using Win-
dows applications.

Distributing a centrally maintained infrastructure.Our
university maintains a pool of computers that host the
software for course assignments. Towards the end of the
term, these computers become over-subscribed and slow.
While the course software and the students’ home directo-
ries are all available over a distributed file system (AFS),
most students do not want to risk installing Linux and con-
figuring AFS on their laptops. We gave students external
USB drives with a VAT and created a Linux appliance that
uses AFS to access course software and their home di-
rectories. The students used the VAT and the appliance
to take advantage of the ample cycles on their laptops,
while leaving the Windows setup on their internal drive
untouched.

5.2 Lessons from our Experience

We appreciate that we only need to update an appliance
once and all of the users can benefit from it. The authors
would not be able to support all the users of the system
otherwise.

The design of the VAT as a portable, self-contained,
fixed-function device contributes greatly to our ability to
carry out our experiments.

1. Auto-update. It is generally hard to conduct exper-
iments involving distributed users because the soft-
ware being tested needs to be fixed and improved fre-
quently, especially at the beginning. Our system au-
tomatically updates itself allowing us to make quick
iterations in the experiment without having to recall
the experiment. The user needs to take no action, and
the system has the appearance of healing itself upon
a reboot.

2. Self-containment. It is easy to get users to try out
the system because we give them an external USB
drive from which to boot their computer. The VAT
does not disturb the computing environment stored
on their internal hard drive.

The system also makes us less wary of taking actions
that may compromise an appliance. For example, we can
now open email attachments more willingly because our
system is up to date with security patches, and we can
roll back the system should the email contain a new virus.
As a trial, we opened up a message containing the BagleJ
email virus in a system that had not yet been patched. Be-
cause BagleJ installed itself onto the system disk, it was
removed when we rebooted. We have had similar expe-
riences with spyware; a reboot removes the spyware exe-
cutables, leaving only some icons on the user’s desktop to
clean up.

We observed that the system can be slow when it is used
to access appliance versions that have not yet been cached.
This is especially true over a DSL network. Prefetching
can be useful in these cases. Prefetching on a LAN is
fast; on a DSL network, it is useful to leave the computer
connected to the network even when it is not in use, to al-
low prefetching to complete. The important point to note
here is that this is fully automatic and hands-free, and it is
much better than having to baby-sit the software installa-
tion process. Our experience suggests that it is important
to prioritize between the different kinds of network traf-
fic performed on behalf of the users; background activi-
ties like prefetching new appliance versions or backing up
user data snapshots should not interfere with normal user
activity.

We found that the performance of the Collective is not
satisfactory for I/O intensive applications such as software
builds, and graphics intensive applications such as video
games. The virtualization overhead, along with the I/O
overhead of our cache makes the Collective not suitable
for these applications.

Finally, many software licenses restrict the installation
of software to a single computer. Software increasingly
comes with activation and other copy protection mea-
sures. Being part of a large organization that negotiates
volume licenses, we avoided these licensing issues. How-
ever, the current software licensing model will have to
change for the Collective model to be widely adopted.

6 Related Work
To help manage software across wide-area grids,
GVFS [26] transfers hardware-level virtual machines.
Their independent design shares many similarities to our
design, including on-disk caches, NFS over SSH, and
VMM-specific cache coherence. The Collective evaluates
a broader system, encompassing portable storage, user

data, virtual appliance transceiver, and initial user expe-
riences.

Internet Suspend/Resume (ISR) [7] uses virtual ma-
chines and a portable cache to provide mobility; the Col-
lective architecture also provides management features
like rollback and automatic update, in addition to mobil-
ity. Similar to our previous work [13], ISR uses a cache
indexed by content hash. In contrast, the current Collec-
tive prototype uses COW disks and a cache indexed by lo-
cation. We feel that any system like the Collective needs
COW disks to succinctly express versions; also, indexing
the cache by location was straightforward to implement.
Index by hash does have the advantage of being able to
use a cached block from an unrelated disk image. Our
previous work [13] suggests that there is promise in com-
bining COW disks and index by hash. In the case a user
does not wish to carry portable storage, ISR also imple-
mentsproactiveprefetching, which sends updated blocks
to the computers the user uses commonly in anticipation
of the user arriving there. The Collective uses prefetching
of data from repositories to improve the performance at
VATs where the user is already logged in. The two ap-
proaches are complementary.

Managing software using disk images is common; a
popular tool is Symantec Ghost [17]. Unlike our sys-
tem, a compromised operating system can disable Ghost
since the operating system has full access to the raw hard-
ware. In addition, since Ghost does not play copy-on-
write tricks, roll back involves rewriting the whole parti-
tion. This potentially lengthy process limits the frequency
of ghosting. Finally, Ghost leaves it to the administrator
and other tools to address how to manage user data.

Using network repositories for disk images and ex-
pressing updates compactly using differences are explored
by Rauch et al [9]. A different way of distributing disk im-
ages is Live CDs, bootable CDs with a complete software
environment. Live CDs provide lock down and can easily
roll back changes to operating systems. However, they do
not provide automatic updates and management of user
data.

Various solutions for transparent install and update ex-
ist for platforms other than x86 hardware. Java has Java
Web Start [21]; some Windows games use Valve Steam;
Konvalo and Zero Install manage Linux applications. The
Collective uses virtual machine technology and an auto-
matically updating virtual appliance transceiver to man-
age the entire software stack.

Like the Collective, MIT’s Project Athena [4] provides
the management benefits of centralized computing while
using the power of distributed desktop computers. In
Athena, management is a service that runs alongside ap-
plications; in contrast, the Collective’s management soft-
ware are protected from the applications by a virtual
machine monitor. The Collective uses a disk-based ab-

straction to distribute software and user data; in contrast,
Athena uses a distributed file system. By explicitly ex-
posing multiple versions of disk images through reposi-
tories, the Collective can provide consistent snapshots of
software and does not force users to start using the new
version immediately. In contrast, software run from a net-
work file system must be carefully laid out and managed
to provide similar semantics. In Athena, users can mix
and match software from many providers; in our model,
an appliance is a monolithic unit created and tested by an
administrator.

Candea et al [3] have explored rebooting components
of a running system as a simple, consistent, and fast
method of recovery. The Collective uses reboots to roll-
back changes and provide upgrades, providing similar ad-
vantages.

7 Conclusions
This paper presents the Collective, a prototype of a system
management architecture for managing desktop comput-
ers. This paper concentrates on the design issues of a com-
plete system. By combining simple concepts of caching,
separation of system and user state, network storage, and
versioning, the Collective provides several management
benefits, including centralized management, atomic up-
dates, and recovery via rollback.

Our design of a portable, self-managing virtual appli-
ance transceiver makes the Collective infrastructure it-
self easy to deploy and maintain. Caching in the Collec-
tive helps provide good interactive performance even over
wide-area networks. Our experience and the experimen-
tal data gathered on the system suggest that the Collective
system management architecture can provide a practical
solution to the complex problem of system management.

8 Acknowledgments
The work for this paper was funded in part by the Na-
tional Science Foundation under Grant No. 0121481.
We would like to thank Ben Pfaff, Chris Unkel, Emre
Kıcıman, George Candea, Arvind Arasu, Mendel Rosen-
blum, Eu-jin Goh, our shepherd Ed Lazowska, and the
anonymous reviewers for their comments.

References
[1] E. Bailey. Maximum RPM. Sams, 1st edition, 1997.
[2] W. M. Bulkeley. The office PC slims down.The Wall Street Jour-

nal, January 2005.
[3] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Mi-

croreboot – a technique for cheap recovery. InProceedings of the
6th Symposium on Operating Systems Design and Implementation,
pages 31–44, December 2004.

[4] G. Champine, J. Daniel Geer, and W. Ruh. Project Athena as a dis-
tributed computer system.IEEE Computer Magazine, 23(9):40–
51, September 1990.

[5] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A virtual machine-based platform for trusted computing. In
Proceedings of the 19th Symposium on Operating System Princi-
ples(SOSP 2003), pages 193–206, October 2003.

[6] KNOPPIX Live CD Linux distribution. http://www.
knoppix.org/ .

[7] M. Kozuch, M. Satyanarayanan, T. Bressoud, C. Helfrich, and
S. Sinnamohideen. Seamless mobile computing on fixed infras-
tructure. Technical Report 28, Intel Research Pittsburgh, 2004.

[8] J. Nieh, S. J. Yang, and N. Novik. Measuring thin-client perfor-
mance using slow-motion benchmarking.ACM Transactions on
Computer Systems, 21(1), February 2003.

[9] F. Rauch, C. Kurmann, and T. Stricker. Partition repositories
for partition cloning—OS independent software maintenance in
large clusters of PCs. InProceedings of the IEEE International
Conference on Cluster Computing 2000, pages 233–242, Novem-
ber/December 2000.

[10] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper.
Virtual network computing.IEEE Internet Computing, 2(1):33–
38, January/February 1998.

[11] L. Rizzo. Dummynet: a simple approach to the evaluation
of network protocols. ACM Computer Communication Review,
27(1):31–41, January 1997.

[12] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich, J. Chow,
J. Norris, M. S. Lam, and M. Rosenblum. Virtual appliances for
deploying and maintaining software. InProceedings of Seven-
teenth USENIX Large Installation System Administration Confer-
ence, pages 181–194, October 2003.

[13] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. Lam, and
M. Rosenblum. Optimizing the migration of virtual computers. In
Proceedings of the Fifth Symposium on Operating Systems Design
and Implementation, pages 377–390, December 2002.

[14] C. Sapuntzakis and M. Lam. Virtual appliances in the collective:
A road to hassle-free computing. InWorkshop on Hot Topics in
Operating Systems, pages 55–60, May 2003.

[15] B. K. Schmidt, M. S. Lam, and J. D. Northcutt. The interactive
performance of SLIM: a stateless, thin-client architecture. InPro-
ceedings of the 17th ACM Symposium on Operating System Prin-
ciples, pages 32–47, December 1999.

[16] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet
in your spare time. InProceedings of the 11th USENIX Security
Symposium, pages 149–167, August 2002.

[17] Symantec Ghost.http://www.ghost.com/ .
[18] TCPA. http://www.trustedcomputing.org/ .
[19] Rational VisualTest. http://www.ibm.com/software/

awdtools/tester/robot/ .
[20] VMware GSX server. http://www.vmware.com/

products/server/gsx_features.html .
[21] Java web start. http://java.sun.com/j2se/1.5.0/

docs/guide/javaws/ .
[22] P. Wilson. Definitive Guide to Windows Installer. Apress, 1st

edition, 2004.
[23] Xnee home page. http://www.gnu.org/software/

xnee/www .
[24] Yellowdog updater modified (yum).http://linux.duke.

edu/projects/yum/ .
[25] N. Zeldovich and R. Chandra. Interactive performance measure-

ment with VNCplay. InProceedings of the FREENIX Track: 2005
USENIX Annual Technical Conference, pages 153–162, April
2005.

[26] M. Zhao, J. Zhang, and R. Figueiredo. Distributed file system
support for virtual machines in grid computing. InProceedings of
the Thirteenth IEEE Symposium on High-Performance Distributed
Computing, June 2004.

