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Abstract
Writing concurrent systems software is error-prone, be-
cause multiple processes or threads can interleave in many
ways, and it is easy to forget about a subtle corner case.
This paper introduces CSPEC, a framework for formal
verification of concurrent software, which ensures that
no corner cases are missed. The key challenge is to re-
duce the number of interleavings that developers must
consider. CSPEC uses mover types to re-order commuta-
tive operations so that usually it’s enough to reason about
only sequential executions rather than all possible inter-
leavings. CSPEC also makes proofs easier by making
them modular using layers, and by providing a library of
reusable proof patterns. To evaluate CSPEC, we imple-
mented and proved the correctness of CMAIL, a simple
concurrent Maildir-like mail server that speaks SMTP and
POP3. The results demonstrate that CSPEC’s movers and
patterns allow reasoning about sophisticated concurrency
styles in CMAIL.

1 Introduction
Achieving high performance on a single computer re-
quires concurrency, such as running on multiple cores or
interleaving disk and network I/O with computation. Con-
current software, however, is difficult to get right because
threads can interleave in many ways, and reasoning about
all possible interleavings is hard. Furthermore, testing is
insufficient, because there are usually too many interleav-
ings to consider, and because it is difficult to reproduce a
bug unless the developer knows the precise interleaving
that caused it. By contrast, formal verification can prove
that a system behaves correctly (i.e., satisfies its specifica-
tion) in every possible interleaving, including all corner
cases.

There has been some prior work on machine-checked
verification of concurrent systems software on a single
computer. For example, CertiKOS has verified spinlocks
for protecting scheduling queues [13, 21]. As we dis-
cuss in detail in §2, that work focuses on lock-based
concurrency. Systems in which concurrency takes the
form of multiple processes sharing a file system tend to
avoid the use of locks because they interact badly with
crashes. This requires reasoning about many possible
interleavings, since there is no lock enforcing sequential
execution during critical sections. Work on a concur-
rent garbage collector [17, 18] supports reasoning about
lock-free shared-memory concurrency, but relies on pen-

and-paper proofs for key theorems, and does not support
important proof patterns needed for CMAIL.

This paper presents CSPEC, a framework for specifying,
implementing, and proving the correctness of concurrent
systems. CSPEC supports reasoning about concurrent
processes that share a file system, as well as about con-
current threads that share data structures in memory. All
of CSPEC is implemented and proven in the Coq proof
assistant [36].

To show that CSPEC makes it fairly easy to prove the
correctness of concurrent software, we used it to develop
a simple concurrent mail server, CMAIL. Typical mail
servers such as Maildir do not use file locks for mail
delivery, since locks are fragile if a process is killed or
suspended while holding the lock [3]. Instead, Maildir
relies on careful reasoning about atomicity and ordering
of file system operations (e.g., writing data to a temporary
file before renaming it into the user’s mailbox directory).
Mail delivery must interact safely with mail pickup (e.g.,
retrieving mail via POP3)—for instance, retrieving mail
from a mailbox in the presence of concurrent deliveries to
the same mailbox. Finally, other parts of the mail server
do use POSIX file locking—for example, to ensure that a
message cannot be retrieved and deleted at the same time.

The key challenge in CSPEC is to reduce the number
of interleavings that the developer must consider in code
like CMAIL’s lock-free delivery. To achieve this, CSPEC
uses the notion of mover types [27], which exploits the
fact that certain operations are left- or right-commutative
with respect to concurrent operations by other processes.
CSPEC uses mover types to re-order operations so that
processes appear to execute longer blocks of sequential
code. This reduces the problem of reasoning about all
interleavings to reasoning about just the atomic execu-
tion of these longer sequential blocks. CSPEC builds on
prior work that used mover types to reason about concur-
rency [11, 16, 18], and provides the first general mover
framework with a machine-checked proof of its imple-
mentation (see §2).

CSPEC allows the developer to separately tackle differ-
ent aspects of the design by structuring the overall system
as a stack of layers. Each layer has a formal specification
and its own implementation and proof. CSPEC provides a
library of patterns for different kinds of proofs that a layer
might need, such as mover types, retry loops, abstracting
state, partitioning state, and proving that the code follows
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a protocol (i.e., a set of rules), such as accessing memory
only while holding a lock.

We evaluate two key aspects of CSPEC: whether CSPEC
makes it possible to do correctness proofs for sophis-
ticated concurrent software, and whether the resulting
concurrency translates into actual speedup. CMAIL is
our primary case study of verifying concurrent software.
CSPEC allowed us to handle its challenging concurrency
patterns, such as a delivery process that modifies a mail-
box directory at the same time the user is picking up mail,
multiple delivery processes that write messages into the
same mailbox, and concurrent processes sharing the same
temporary directory to store partially received messages.

CSPEC’s layering allowed us to decompose the over-
all correctness argument for CMAIL into smaller steps,
each layer addressing a specific aspect of CMAIL’s con-
currency and using a CSPEC proof pattern to formally
verify it. All of CSPEC’s proof patterns were important
in CMAIL, and most patterns were used multiple times.
Designing and building CSPEC and CMAIL took two peo-
ple approximately 6 months, on top of another 12 months
of experimenting with several failed alternative designs.
Experiments show that CMAIL’s concurrency makes it
run faster on a multi-core machine.

CMAIL’s concurrency model is based on processes
sharing a file system. CSPEC also allows developers to
reason about other concurrency models. To demonstrate
this, we specified a model of x86-TSO [34], consisting of
a shared memory with per-core write buffers. On top of
this model, we implemented and proved the correctness
of an atomic counter. We used 10 layers to verify this
counter, re-using proof patterns that we developed for
CMAIL.

To summarize, the contributions of this paper are:

• CSPEC, a framework for verifying concurrent systems
using mover types, which is fully machine-checked in
Coq.

• A modular approach that simplifies proofs using layers
and a library of proof patterns.

• An evaluation that uses CSPEC to formally prove the
correctness of a concurrent mail server on top of a
POSIX file system, and an atomic counter on top of a
weak shared-memory model. The results demonstrate
that CSPEC allows reasoning about a wide range of
concurrency styles.

The source code of CSPEC and the example applica-
tions are publicly available at https://github.com/
mit-pdos/cspec. Our prototype has several limitations.
CMAIL does not include verified parsing or protocol im-
plementations of SMTP or POP3. CSPEC uses Coq’s
extraction to generate executable code, which means the
executable programs rely on either Haskell or OCaml at

runtime; hence, one of these is part of the trusted comput-
ing base. Finally, CSPEC cannot be applied to existing
software, since it requires the program to be written in
CSPEC’s framework.

2 Related work
CSPEC adopts many ideas from previous research in spec-
ification and verification of concurrent shared-memory
and distributed-systems software.

Verification approaches. There are many ways to verify
concurrent software. After experimenting with several
different approaches (including several versions of con-
current separation logic [5] and rely-guarantee [12, 20]),
we settled on using the state machines and refinement that
underlie TLA and I/O automata [23, 24, 30, 31], com-
bined with the proof pattern of movers [27].

CIVL [17, 18] (and its predecessor QED [11]) is the
work most closely related to CSPEC, and CSPEC borrows
many ideas from it. CIVL uses the state-machine ap-
proach with support for atomic actions, movers, a mover
pattern inspired by CIVL’s yield sufficiency automaton,
and location invariants to reduce the proof burden. It is im-
plemented as an extension to Boogie, and the authors used
it to specify and verify a concurrent garbage collector that
uses an algorithm by Dijkstra et al. [10] that has tricky
concurrency reasoning. Subsequent work used CIVL to
reason about concurrent programs on x86-TSO [4].

CSPEC borrows atomic actions and movers from CIVL,
but differs in two ways. First, many of CIVL’s proofs
(e.g., all the proofs in §4 of [18]) are done with pen and pa-
per [15], whereas all parts of CSPEC are machine-checked
in Coq. Second, CSPEC supports some patterns not found
in CIVL, such as retry loops, which were important for
reasoning about concurrency in CMAIL. Furthermore,
this paper reports on our experience in using CSPEC for
a different application (namely, a file-system-based mail
server rather than a concurrent garbage collector), which
exhibits different styles of concurrency.

The advantage of the fact that CSPEC has machine-
checked proofs, compared to CIVL’s pen-and-paper
proofs, is that it gives us confidence that all of the proof
patterns are correct (once we prove them). This, in turn,
makes it easier to experiment with proof patterns. For ex-
ample, during the development of CSPEC, we added (and
modified) a number of proof patterns (see §6). Having
machine-checked proofs gave us confidence that we did
not introduce any bugs.

Like CSPEC, CertiKOS’s CCAL [14] organizes rea-
soning about concurrent execution into layers and has a
linking theorem to “compile” top-level operations into
bottom-layer operations. CCAL has been used for fully
machine-checked proofs of several lock implementations
and of CertiKOS’s concurrent scheduling queue [13, 21].
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CCAL has no notion of movers; it uses rely-guarantee-
style reasoning to prove atomicity for operations in a
shared log. The only case in which CCAL can avoid rea-
soning about interleaving is when a thread accesses only
thread-private memory. This is insufficient for CMAIL,
which accesses shared files and directories all the time:
for instance, mail pickup can read a message that was just
written by a concurrent delivery process.

Another notable example of verifying concurrent sys-
tems software is Microsoft’s HyperV verification, which
used VCC [7–9], but the work on VCC and HyperV ap-
pears to have stopped after verifying about 20% of Hy-
perV [7]. In contrast to CSPEC, the VCC approach did
not use mover types for reasoning about concurrency.

Distributed systems. Related work in verifying dis-
tributed systems focuses on network protocols (message
loss and re-ordering) as well as node failures and network
partitions, while assuming a static partitioning of state
across nodes [16, 26, 33, 37]. The focus of CSPEC, in
contrast, is on dynamic sharing of state between processes
on a single node, and on the patterns that help develop-
ers construct proofs for different styles of concurrency.
CSPEC does not address node failures.

IronFleet [16] uses the notion of trace inclusion and
movers in their reduction argument, which has been
machine-checked [19]. However, IronFleet’s verified re-
duction argument is specialized for IronFleet’s specific
use case, and has a hard-coded list of movers: sending
and receiving UDP packets, and acquiring and releasing
locks [28]. In contrast, CSPEC is a general-purpose mover
framework.

Mail servers. Affeldt and Kobayashi verified a part of a
mail server written in Java, by manually translating the
Java program into a Coq function, and verifying proper-
ties of the Coq function [1, 2]. They verified the SMTP
receiver part of the mail server, but do not model the inter-
action between the mail server and the file system. We use
CSPEC to verify CMAIL, which includes both delivery via
SMTP as well as pickup via POP3, and prove that CMAIL
correctly uses the file system.

Ntzik [32] developed a concurrent specification for
POSIX file systems using a concurrent separation logic,
and used it to reason about snippets of mail server code for
spam filtering. In contrast, CMAIL is a fully operational
concurrent mail server, with a complete specification and
machine-checked proof of its implementation.

3 Goal and challenges
The goal of CSPEC is to allow developers to write spec-
ifications for concurrent systems software such as the
mail server and to prove that an implementation satisfies
the spec. The proof should ensure that every possible
interleaving, no matter how unlikely, is handled correctly.

1 def deliver(user, msg):
2 tmpname = "/tmp/%d" % getpid()
3 f = open(tmpname, "w")
4 f.write(msg)
5 f.close()
6

7 while True:
8 mboxfn = "/var/mail/%s/%d" % (user, random())
9 if link(tmpname, mboxfn) == ok:

10 unlink(tmpname)
11 return

Figure 1: Pseudocode for delivery in a Maildir-like mail server.

1 def pickup(user):
2 files = readdir("/var/mail/%s" % user)
3 messages = []
4 for fn in files:
5 f = open("/var/mail/%s/%s" % (user, fn))
6 messages.append(f.read())
7 f.close()
8 return messages

Figure 2: Pseudocode for pickup in a Maildir-like mail server.

To illustrate why this is hard, consider a mail server
running on top of a file system, as a prototypical example
of concurrent systems software. A mail server performs
two main operations: deliver, which accepts incoming
messages and writes them to the file system, and pickup,
which allows users to download their messages. A mail
server typically runs many processes, which concurrently
perform deliveries and pickups.

For instance, consider the Maildir-like [3] server shown
in Figures 1 and 2. In Maildir, each user’s mailbox is a
directory containing one file for each message. Maildir
does not use locks for most concurrency control; instead,
deliver and pickup choose file names and issue file sys-
tem operations that are carefully designed to avoid races.

deliver first writes the incoming message into a tem-
porary file with a unique filename (based on the process
ID) and then links the file into the user’s mailbox directory
with a randomly chosen name. If the link fails because
the filename already exists (which can happen because
of another delivery that chose the same random name),
deliver retries it with a different filename. To read a
user’s messages, pickup calls readdir to list the files in
the user’s mailbox, and reads them one at a time.

Even though the code appears to be simple, it is care-
fully designed to handle many subtle interleavings of file
system operations that arise when multiple concurrent pro-
cesses invoke deliver and pickup. For example, pickup
will not return any partially written messages to the user,
because deliver will link a message into the user’s mail-
box only after it has been fully written to a file. As another
example, two deliver processes will not overwrite each
other’s messages, because they choose distinct filenames
in the temporary directory, and because they use link to
atomically place a message into the mailbox directory if
and only if the filename does not already exist.
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Definition message := string.

(* Defines a new type, [Op], representing operations, where
running an [Op retT] returns a value of type [retT]. *)

Inductive Op : forall (retT : Type), Type :=
(* one operation is [Deliver], which takes two arguments,
[u] and [msg], and returns a [bool] *)

| Deliver : forall (u : user) (msg : message), Op bool
| Pickup : forall (u : user), Op (list (msgid * message))
| CheckUser : forall (u : user), Op bool
| Delete : forall (u : user) (id : msgid), Op unit.

(* The abstract state is a two-level map: from users to
mailboxes, which are maps from IDs to messages. *)

Definition State := Map.t user (Map.t msgid message).

(* The semantics, defining valid transitions for operations. *)
Inductive step :
(* Transitions depend on the operation being executed, the
current PID, and the initial state .. *)

forall ‘(op : Op retT) (pid : nat) (st : State)
(* .. and determine the operation’s return value (whose
type depends on the operation) and the final state *)

(r : retT) (st’ : State), Prop :=
| StepDeliverOK : forall u msg pid id st mbox,
(* if user [u]’s mailbox is [mbox] *)
Map.MapsTo u mbox st ->
(* .. and message ID [id] is not used in [mbox] *)
~ Map.In id mbox ->
(* .. then the following is a valid transition: *)
(Deliver u msg, pid, st) |->

(true, Map.set u (Map.set id msg mbox) st)
| StepDeliverErr : forall u msg pid st,
(Deliver u msg, pid, st) |-> (false, st)

(* Some transitions omitted for space reasons *)
| StepDelete : forall u id pid st mbox,
Map.MapsTo u mbox st ->
(Delete u id, pid, st) |->

(tt, Map.set u (Map.remove id mbox) st)
where "(op, pid, st) |-> (r, st’)" := step op pid st r st’.

Figure 3: Specification of the mail server. Code snippets in this paper
have been simplified for readability; the full code of CSPEC and CMAIL
is available at https://github.com/mit-pdos/cspec.

4 Approach to proving atomicity
CSPEC’s approach to verifying concurrent software is
to specify the atomic semantics of operations such as
deliver and pickup, and then prove that their implemen-
tations, such as the code shown in Figure 1 and Figure 2,
meet their specs.

To use CSPEC, a developer first specifies the desired
behavior of each operation if it were to execute atomi-
cally; then writes code in CSPEC to achieve this behavior,
even when running concurrently; and finally the developer
proves that the code indeed meets the atomic spec in all
possible cases, with the help of CSPEC’s proof patterns.

For example, Figure 3 shows the atomic spec of the
main operations in CMAIL. The first statement in Figure 3
defines the set of allowed operations, using a Coq induc-
tive type called Op. The next statement defines the abstract
state. The last statement defines the semantics, by describ-
ing the allowed transitions using a Coq inductive type.
For example, the first allowed transition, StepDeliverOK,
states one legal way for a Deliver operation to execute
with some arguments u and msg. Namely, if u’s mailbox
is mbox, then Deliver adds the incoming message with
a new identifier id in the user’s mailbox. Here, Deliver
denotes the primitive operation in the semantics, whereas

S0 S1 S2

C0 C1 C2 C3 C4 C5 C6
1: write 2: link 1: close 1: link 3: readdir 1: unlink

2: deliver 1: deliver

Figure 4: Example diagram of a simulation proof, connecting code
from Figure 1 with the spec from Figure 3. In the example, processes 1
and 2 each deliver a message concurrently, while process 3 is running
pickup.

the pseudocode of deliver from Figure 1 describes a
possible implementation of Deliver.

To understand why proving correctness is hard, con-
sider the approach based on a simulation proof [30], used
by many frameworks [16, 25, 35]. The idea is to define
an abstraction relation that connects the spec-level states
with code-level states, and to show that this relation is
preserved by every possible transition at the code level.

Figure 4 shows a simulation argument for one execu-
tion of the mail server: two processes concurrently deliv-
ering a mail message. At the bottom are code-level states,
representing the states and transitions of the file system,
corresponding to code from Figure 1 (in this example,
the mail server is handling an incoming SMTP message).
At the top are spec-level states, representing the abstract
state and transitions of the mail server, corresponding to
the specification in Figure 3. The abstraction relation,
shown as vertical arrows, captures the correspondence
between the abstract spec-level state (set of messages in
each user mailbox) and the concrete code-level state (files
and directories representing the mailboxes). For each
code-level transition, the simulation proof shows that the
new code-level state corresponds to a spec-level state after
zero or more spec-level transitions.

Proving atomicity using simulation turns out to be hard,
because it requires the developer to consider many possi-
ble interleavings, such as the one shown at the bottom of
Figure 4 among others. This leads to a secondary compli-
cation: the abstraction relation must describe all reachable
code-level states, including ones in which many processes
are halfway through executing their updates.

We would like to reduce the problem of reasoning about
concurrent execution to reasoning about sequential execu-
tion as much as possible. To provide some intuition for
why this might work, consider deliver from Figure 1. We
would like to ignore interleavings with other processes be-
fore link (lines 2-8) and after link (lines 9-11), because
operations on lines 2-8 affect that process’s temporary file,
which is specific to that process’s PID. Other processes
will not interfere with it. However, the interleavings with
respect to link (line 9) do matter, because the message
created by link in the shared mailbox can now affect
other processes running deliver or pickup.

To formalize this intuition, CSPEC uses the idea of left-,
right-, and non-movers [27], which captures the notion
that operations from different processes might (or might
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open write link open write close link unlink readdir unlink

Time

Figure 5: Example interleaving of file system operations executed by
3 separate processes: circles correspond to a process running deliver,
squares correspond to another process running deliver, and diamonds
correspond to another process running pickup. Dotted operations and
arrows indicate re-ordering with the help of mover types.

not) commute with one another. Movers help CSPEC
reason about atomicity, by proving that certain sets of
interleavings all produce the same outcome, and hence
that it suffices to consider just the interleaving where the
code executes atomically.

Consider the interleaving in Figure 5, which depicts
the code-level steps from the bottom of Figure 4. (Ignore
the dashed elements for now.) In this example, the open,
write, and close operations from process 1 (denoted by
circles) are right-movers, which means that moving their
execution to the right in the diagram (past the transitions
of other processes) produces the same outcome. This is
because open and write modify a temporary file that’s
named by the process ID and hence not accessed by any
other process, and because close does not interact with
other processes at all. Similarly, the unlink operation
from process 1 is a left-mover, which means that it can be
moved earlier (left) in the execution (past the transitions of
other processes) without changing the outcome. However,
note that the link operation from process 1 is neither a
left- or right-mover (i.e., a non-mover), since moving it
to the left or right can change the outcome by affecting a
readdir from a concurrent pickup.

By using left- and right-movers in Figure 5, we can re-
order the execution of deliver in process 1 to be atomic,
as shown by the dashed elements in Figure 5. This re-
ordering corresponds to a sequential execution of deliver,
and allows us to prove that deliver can be thought of as
executing atomically. We do the same style of reasoning
for pickup, showing that we can rearrange operations so
that they form a sequential execution of pickup, and then
proving that the implementation preserves the atomicity
of pickup. This further allows us to prove correctness of
arbitrary interleavings of processes by considering just
the sequential executions of deliver and pickup.

5 Design of CSPEC

This section provides an overview of CSPEC’s design by
describing what a layer is, how CSPEC defines correctness,
and how a developer proves an implementation correct.

5.1 Layers
CSPEC’s workflow involves defining layers. The spec
of a layer has three parts: the set of operations (Op), the
state manipulated by those operations (State), and the

Definition pathname := list string.

Inductive Op : forall (retT : Type), Type :=
| Read : forall (pn : pathname), Op (option string)
| Link : forall (src : pathname) (dst : pathname), Op bool
| Unlink : forall (pn : pathname), Op unit
| List : forall (dirpn : pathname), Op (list string)
(* Some operations omitted for space reasons *).

Inductive State : Type :=
| ST : forall (Files : Map.t pathname string)

(Locks : Map.t pathname bool), State.

Inductive step : forall ‘(op : Op retT) (pid : nat)
(st : State) (r : retT) (st’ : State), Prop :=

| StepReadOK : forall pn fs pid msg locks,
Map.MapsTo pn msg fs ->
(Read pn, pid, ST fs locks) |-> (Some msg, ST fs locks)

| StepReadNone : forall pn fs pid locks,
~ Map.In pn fs ->
(Read pn, pid, ST fs locks) |-> (None, ST fs locks)

(* Some transitions omitted for space reasons *)
| StepLinkOK : forall fs pid dst data pn locks,
Map.MapsTo pn data fs ->
~ Map.In dst fs ->
(Link pn dst, pid, ST fs locks) |->

(true, ST (Map.set dst data fs) locks)
| StepLinkErr : forall fs pid dst pn locks,
(Link pn dst, pid, ST fs locks) |-> (false, ST fs locks)

where "(op, pid, st) |-> (r, st’)" := step op pid st r st’.

Figure 6: Low layer for the mail server example.

semantics, describing how each operation updates this
state and what value it returns (the step relation).

For example, the top layer of the mail server is the spec
shown in Figure 3. The bottom layer is the file system,
partially shown in Figure 6. This layer defines the file
system operations, the file system state (a tuple, called ST,
consisting of a map representing the contents of all files,
and a map representing whether each file is locked using
POSIX file locking), and the results of each operation:
how it updates the state and what values it returns.

Layers are an important modularity technique. Many
proofs in CSPEC require considering all possible transi-
tions made by other processes (e.g., when proving that an
operation is a right- or left-mover). Doing so directly on
top of the file system layer would be tedious, because
there are many possible transitions (corresponding to
many operations), and because the transitions operate
in terms of low-level file system state. Re-defining the
operations and state in an intermediate layer can simplify
the proof, because the state is smaller and there are fewer
operations to consider. For instance, to prove CMAIL, we
decomposed it into 13 layers as shown in Figure 7, with
each layer (except the bottom) implemented using the
operations of the layer below it. As an example, Figure 8
shows the implementation connecting the MailboxTmp-
Abs and Deliver layers.

Connecting two layers requires writing code for every
higher-level operation that uses only lower-level opera-
tions, and a proof that this code meets the layer’s spec.
CSPEC then links multiple layers together by chaining
their implementations and proofs. It’s much easier to do
the proofs if they map onto CSPEC’s proof patterns.
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Layer name Operations State Pattern

MailServerComposed Deliver, Pickup, Delete, CheckUser (Figure 3) Messages in user mailboxes (Figure 3) PartMailServerPerUser Per-user Deliver, Pickup, Delete Messages in one user’s mailbox AbsMailServerLockAbs same as above + Lock on mailbox for serializing Pickup and Delete Mov+Prot

Pe
r-

us
er

la
ye

rs

Mailbox + List and Read; - Pickup same as above AbsMailboxTmpAbs same as above Additional temporary directory MovDeliver + Create, Link, and Unlink; - Deliver same as above Mov+ProtDeliverListPid + Filtered List returning files with caller’s PID same as above Mov+ProtMailFS + GetPID; - Filtered List same as above AbsMailFSStringAbs same as above File names are strings instead of pairs MovMailFSString Operations now in terms of string names same as above AbsMailFSPathAbs same as above Per-user file system MovMailFSPath Per-user file system operations same as above Part+AbsMailFSMerged File system operations (Figure 6) File system (Figure 6)

Figure 7: Layers used for verifying the mail server. The operations column describes the Op type for that layer. The state column describes the
abstract state, State, over which the layer’s semantics are defined. The pattern column lists the CSPEC proof patterns (described in §6) used for
connecting two layers. This layering corresponds to “plan 1” described later on in §8.1; not shown is one intermediate layer used for “plan 2.”

For example, some of the lower layers in Figure 7 deal
with how the mail server state is encoded using directories
and file names. That is, these layers have a different defi-
nition of State, but typically the same list of operations
(i.e., same Op) as higher layers. All of the layers above,
however, assume that the mail server’s mailbox is com-
pletely disjoint from the temporary directory, and assume
that file names are pairs of process ID and message ID
(i.e., their State is just a map, as in Figure 3). As a result,
the code and proofs at higher layers need not worry about
file name encoding, pathnames, traversing directories, etc.

5.2 Defining correctness

CSPEC’s definition of correctness revolves around the ob-
servable behaviors allowed by the specification, and the
observable behaviors that can be produced by the imple-
mentation. CSPEC uses a standard notion of correctness:
it requires that the behaviors of the implementation be a
subset of the behaviors allowed by the spec.

More formally, CSPEC models the interaction with the
outside world using the notion of events [24, 30]. The
idea is to annotate operations that interact with the outside
world (e.g., accepting a connection, reading or writing
network messages, closing a connection, etc) as produc-
ing events. These events reflect the external behavior of
our system: SMTP messages coming in and being ac-
knowledged, and POP3 requests coming in and getting
responses. The sequence of events produced by a system
thus defines its externally visible behavior, which we call
a trace.

CSPEC defines correctness of an application by requir-
ing that the traces of events produced by the application
when using the concurrent implementation of operations
(e.g., deliver and pickup) must be a subset of the traces
that can be produced by the application using the spec-
ification of those operations (e.g., Figure 3 for the mail
server). In other words, if the actual implementation of

Definition deliver_core (msg : message) :=
ok <- Call (DeliverOp.CreateWriteTmp msg);
match ok with
| true => ok <- Call (DeliverOp.LinkMail);

_ <- Call (DeliverOp.UnlinkTmp);
Ret ok

| false => _ <- Call (DeliverOp.UnlinkTmp);
Ret false

end.

Definition compile_op ‘(op : MailboxOp.Op T) :=
match op with
| MailboxOp.Deliver msg => deliver_core msg
| MailboxOp.Read pn => Call (DeliverOp.Read pn)
| MailboxOp.Delete pn => Call (DeliverOp.Delete pn)
...
end.

Figure 8: Implementation connecting the MailboxTmpAbs and Deliver
layers.

the system can exhibit some behavior, then this behavior
must be allowed by the atomic specification.

Trace inclusion is a good fit for specifying concurrent
systems, compared to some of the alternative approaches
that have been used by recent systems, such as postcon-
ditions [6]. Postconditions allow specifying the return
values from a procedure, but this does not help with pro-
cedures that never return, such as the mail server that
accepts incoming connections in an infinite loop.

CSPEC also uses the notion of trace inclusion to define
the correctness of intermediate layers, such as the 13
layers used in CMAIL. Transitively, if each layer produces
a subset of traces allowed by the layer above it, the entire
stack of layers is correct: the traces produced by the
bottom-most code are a subset of traces allowed by the
top-most specification.

5.3 Implementation
An implementation is a module that provides one function,
compile_op, which implements higher-level operations in
terms of lower-level operations. For instance, CMAIL has
12 such implementations, connecting its 13 layers. Imple-
mentations of multiple layers can be chained together; for
instance, CMAIL chains together its implementations to
translate high-level operations like Deliver and Pickup
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Lemma createwritetmp_right_mover : forall data,
right_mover DeliverRestrictedAPI.step

(DeliverOp.CreateWriteTmp data).
Proof.
unfold right_mover; intros.
...

Qed.

Lemma unlinktmp_left_mover :
left_mover DeliverRestrictedAPI.step

(DeliverOp.UnlinkTmp).
Proof.
split; eauto.
...

Qed.

Figure 9: Example lemmas about movers that arise in verifying the
implementation of the MailboxTmpAbs layer on top of the Deliver
layer. DeliverRestrictedAPI.step refers to a restricted version of the
semantics of the Deliver layer (using the protocol pattern from §6.2),
where the filename of any file linked into a user’s mailbox must contain
the PID of the process that called link().

into low-level file system operations from Figure 6, such
as the pseudocode shown in Figure 1 and Figure 2 (except
that our actual implementation is in Coq, which is not as
easy to read as the Python-like pseudocode).

To produce runnable code, CSPEC extracts this code to
Haskell using Coq’s code extraction facility, and replaces
the low-level operations with actual file system calls. An
unproven driver, written in Haskell, interfaces with the
network (e.g., accepts connections using sockets) and
calls the appropriate top-level operations. To verify the
driver would require verifying the parsing of SMTP and
POP3 messages, which we didn’t do because it has little
to do with concurrency. Finally, the Haskell compiler
produces an ELF executable.

5.4 Proving
Verifying the implementation entails proving that the
code generated by compile_op correctly implements ev-
ery high-level operation in terms of the lower-level op-
erations. This includes proving that the code preserves
the atomicity of high-level operations, given the atomicity
of the lower-level operations. To make this task easier,
CSPEC provides several proof patterns that encapsulate
proof techniques to prove theorems about the behavior of
a concurrent system.

For instance, the mover approach described in §4 is
one such technique. It allows the developer to prove that
certain operations are atomic. Figure 9 shows the lem-
mas needed to prove the atomicity of deliver_core of
Figure 8. The lemmas state that CreateWriteTmp is a
right mover and UnlinkTmp is a left mover, and the devel-
oper must write a proof in Coq (and checked by Coq) to
show that this is true. CSPEC provides a general-purpose
theorem (discussed in §6) that translates these developer-
proven lemmas into a proof that the entire implementation
of deliver_core executes atomically.

Note that compile_op in Figure 8 translates many oper-
ations one-to-one to lower-level operations. It is trivial to

prove that they are atomic because the lower-level opera-
tions are atomic, and CSPEC does this automatically.

CSPEC chains the proofs of each layer’s compile_op to
provide an end-to-end proof that the resulting executable
system meets the top-level atomicity specification.

6 CSPEC’s proof patterns
CSPEC provides a library of proof patterns that help in
proving that the code connecting two layers is correct.
This section presents each proof pattern in turn.

6.1 Mover pattern
The key pattern provided by CSPEC for reasoning about
concurrency is the mover pattern. As we saw in §4, this re-
duces the problem of reasoning about many interleavings
(i.e., concurrent execution) to a combination of reasoning
about just one interleaving (i.e., atomic sequential exe-
cutions) and proving that certain operations are left- or
right-movers.

For instance, consider the implementation of Deliver
shown in Figure 8 as deliver_core. Running this imple-
mentation concurrently with other Deliver and Pickup
operations can produce many interleavings, since there
are no locks. It is not even possible to enumerate all
the possible interleavings, since there can be an arbitrary
number of concurrent processes.

Intuitively, we can reason about the execution of
deliver_core by observing that the link operation is
the commit point. That is, before link other processes are
not affected (e.g., they cannot observe partially delivered
messages), and after link other processes can observe the
delivered message (if link succeeds).

Equivalence. To formalize this line of reasoning, CSPEC
reasons about equivalent executions—that is, two inter-
leavings that must produce the same trace of events. For
example, changing the order of the unlink in Deliver,
with respect to other processes, produces the same trace.

To prove the atomicity of a procedure using CSPEC’s
mover pattern the developer shows that certain operations
are left- or right-movers with respect to other operations,
and that the code of the procedure consists of these left-
and right-movers operations in a certain order. Given
these lemmas, CSPEC provides a theorem that proves the
equivalence of other interleavings.

Movers. CSPEC models the concurrent execution of an
overall system by repeatedly executing one operation
from some process, which leads to a particular execu-
tion sequence. Treating an entire operation as a single
transition captures the idea that operations are atomic.
The choice of the process whose operation is executed
at each point in this execution sequence determines a
particular interleaving. By considering all processes at
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Definition right_mover step ‘(opA : Op TA) :=
forall ‘(opB : Op TB) st0 st1 st2 pidA rA pidB rB,
pidA <> pidB ->
step opA pidA st0 rA st1 ->
step opB pidB st1 rB st2 ->
exists st1’,
step opB pidB st0 rB st1’ /\
step opA pidA st1’ rA st2.

Figure 10: Definition of the right mover.

Theorem trace_incl_movers : forall ‘(p : proc Op T),
right_left_mover_pattern p -> trace_incl p (Atomic p).

Figure 11: Mover pattern theorem. proc Op T is a type denoting a
procedure that returns a value of type T and can invoke operations
described by Op. Atomic p denotes a procedure that atomically executes
p.

each point in the execution sequence, CSPEC considers
all possible interleavings between concurrent processes.

Figure 10 formally defines what it means for a certain
operation, opA, to be a right-mover. Specifically, it con-
siders every possible execution where opA is followed
by some other operation, opB, from a different process
(with process ID pidB). In this execution, opA changes
the state from st0 to st1, and opB changes the state from
st1 to st2. In order for opA to be a right-mover, it must
be possible to swap opA with opB in this execution: that is,
if opB ran first, it must produce some state st1’ such that
opA will then produce st2, and opB and opA produce the
same return values rB and rA respectively. Left movers
are defined similarly (there are some subtle differences
that we discuss later). As an example, Figure 9 showed
how one layer of CMAIL uses these definitions.

Showing that an operation O is a left- or right-mover
requires considering how O interacts with every possible
operation from another process. Layers help by making
it possible to define the operations in a way that makes it
easier to prove that other operations commute.

Composing movers. In order to reason sequentially
about the execution of a procedure, its code must con-
sist of a sequence of right-movers, followed by zero or
one non-movers, followed by a sequence of left-movers.
This structure allows CSPEC to show that any possible
execution sequence is equivalent to one where the proce-
dure executes sequentially, with no intervening operations
from other processes. Specifically, CSPEC provides a the-
orem, shown in Figure 11, stating that any trace produced
by procedure p is also produced by procedure Atomic p
(which executes p in a single atomic step), as long as p
follows the above mover pattern.

CSPEC proves this theorem by moving all of the right-
movers to the right and all of the left-movers to the left, so
that they appear to execute sequentially with the optional
non-mover in the middle. The non-mover (for example,
link in Deliver) is the commit point of the operation.

Left-mover challenges. Proving the theorem in Fig-
ure 11 is difficult, and required addressing several chal-
lenges with the formalization of left-movers.

First, operations can be left-movers just with specific
arguments or just in specific states. For example, the
implementation of Pickup first lists the files in a user’s
mailbox directory and then opens and reads the files one
at a time, as shown in Figure 2. Here, the open operation
is a left-mover only if called with the pathname of a file in
the user’s mailbox. (The implementation of Pickup holds
a lock to prevent concurrent deletes, but does not prevent
concurrent deliveries.) It is not a left-mover if called with
a filename in the temporary directory, because opening a
temporary file might succeed or fail depending on what
a concurrent Deliver does in the temporary directory.
Furthermore, open is a left-mover only if the file already
exists before the other operation (i.e., the operation being
re-ordered with respect to the open). Otherwise, this other
operation might be Deliver creating the file in question
in the mailbox.

CSPEC supports state- and argument-dependent left
movers by restricting the states and arguments that have
to be considered by the left-mover. Specifically, CSPEC
requires the left-mover to consider only those states and
arguments that can arise after executing the prefix of the
operations leading up to the left mover. For instance, the
procedure p shown in Figure 11 may be composed of
several right-movers, followed by a non-mover, followed
by several left-movers. The left-movers have to consider
only the states that can arise after the right-movers and
the non-mover have executed.

To take advantage of state-dependent left-movers, the
developer first states an invariant that is established by
executing the right-movers followed by the non-mover.
The developer then proves a lemma that, starting from
any state, executing the right-movers followed by the non-
mover establishes this invariant. Finally, when reasoning
about a left-mover, the developer can invoke this lemma
to prove that the state observed by the left-mover satisfies
the invariant.

Second, CSPEC’s model of operations allows for op-
erations to be disabled: that is, the semantics forbids an
operation to execute in a given state. This is represented
by a step relation that does not provide any legal transi-
tions for a particular operation and a particular state. In
the top-level and lowest-level layers such restrictions do
not appear, because CMAIL can always deliver and pickup
mail and the file system can always execute an operation
(even if only to return an error). However, disabled opera-
tions are helpful in intermediate layers, in order to prove
that other processes follow certain rules.

The simplest example is a lock that protects memory
accesses. Reads and writes to memory protected by a lock
commute with other threads, because those threads cannot
access the locked memory. By taking advantage of the
fact that reads and writes are disabled for other threads
that do not hold the lock, CSPEC allows a proof that
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Acquire Read Write Read Release . . . Read . . . Release

Time

Figure 12: Use of left movers in an example process that acquires a
lock, reads a variable, writes a variable, then reads a variable again and
releases the lock. The gray shading of the Release on the right indicates
that, although the Release is part of the code for the round process, the
execution sequence shown is one where the Release never gets around
to executing (e.g., due to other threads preempting it).

reads and writes are movers. (CSPEC’s protocol pattern,
described in §6.2, allows a developer to show that it is
correct to assume that certain operations are disabled.)

Disabled operations complicate the notion of a left-
mover, because moving an operation to the left requires
showing that it can be executed earlier, which requires
showing that it is enabled earlier. Consider a simple exam-
ple shown in Figure 12. Reading from a locked memory
region requires that the caller hold the lock. Moving the
second read earlier requires showing that the caller holds
the lock at that point. CSPEC deals with this by requiring
a proof that a left-mover is stably enabled. This means
that if the operation was enabled in a certain state (e.g., at
the point where the second read actually ran in Figure 12),
then it must be enabled in a prior state before another
operation from a different process ran (e.g., in its dashed
location in Figure 12). The read is stably enabled because
the process must have held the lock, and no other process
can acquire or release this process’s lock.

The final challenge has to do with liveness. For ex-
ample, the Release in Figure 12 is a left-mover, and we
would like to use this fact to make the entire sequence
of five operations into an atomic step. However, in our
example, Release never actually ran (i.e., it is not part
of the execution sequence). This might be because the
scheduler is not fair and repeatedly ran other processes
instead. How can we re-order the Release if it does not
appear in the execution sequence to begin with?

To deal with this problem, CSPEC’s proof considers all
possible execution sequences. If an execution sequence
contains the Release, the proof uses the fact that it is a
left-mover to move it left. However, if an execution se-
quence does not contain the Release (i.e., if the Release
never runs), then it is safe to insert that Release into the
execution sequence. Stable enablement of left movers
guarantees that Release is enabled at the point where
we would like to insert it (i.e., the Release cannot have
been waiting for another process to do something), and
Release being a left-mover guarantees that other opera-
tions from this execution sequence will not be affected by
inserting this Release (because they never saw the lock
being released in the first place).

Definition op_abs :=
forall ‘(op : Op T) st st’ ST pid r,
absR st ST ->
lo_step op pid st r st’ ->
exists ST’,
absR st’ ST’ /\ hi_step op pid ST r ST’.

Figure 13: Definition of abstraction.

6.2 Protocol pattern
Proving that operations are left- or right-movers some-
times requires reasoning about what other processes will
do, not just about what operations they have. In the lock
example above, proving that memory accesses are movers
while holding the lock requires knowing that other pro-
cesses will not access the same memory while this pro-
cess is holding the lock. To reason about such examples,
CSPEC requires the developer to define a protocol, which
is a restricted version of the step execution semantics
that disables certain transitions. In the lock example, this
restricted semantics requires that the caller hold the lock
in order to read or write memory. With this restricted
step relation memory accesses are movers, because other
processes are not allowed to access the same memory
location while not holding the lock.

In reality, nothing prevents another process from ac-
cessing memory without holding the lock. Thus, a proof
that is sound to use the restricted semantics requires a
proof that all users of the API correctly follow this proto-
col. Specifically, this entails proving that any execution
of a process’s code on the unrestricted semantics is also a
valid execution on the restricted semantics.

In theory, this requires reasoning about many inter-
leavings. In practice, however, the reason that a proce-
dure follows a protocol is often simple (e.g., syntactically,
the program never calls Release unless it called Acquire
first). Thus, the proof needs only limited reasoning about
the execution of other processes. In the locking example,
proving that a process reads or writes memory only while
holding a lock requires just one helper lemma: that other
processes will not release a lock held by this process.

6.3 Abstraction pattern
To connect layers with different types of states, CSPEC
provides an abstraction pattern. The abstraction pattern
requires the developer to define an abstraction relation
that connects low-level and high-level states, and to prove
that every operation preserves this relation. This pattern
is a specialized version of a standard simulation proof: it
requires that the operations remain the same.

Figure 13 formally defines the proof obligation for the
abstraction pattern. It requires a proof that, for every
operation op, if op runs from state st to st’ in the low-
level semantics, and low-level state st corresponds to
high-level state ST according to the abstraction relation
absR, then there’s a state ST’ that corresponds to st’ such

9



that the same op runs from ST to ST’ with the same return
value.

The rest of this subsection describes two stylized uses
of the abstraction pattern that we have found particularly
useful in developing CMAIL and the x86-TSO locked
counter example.

Invariant. The abstraction pattern allows a developer to
prove that a layer follows an invariant: some property
of states at that layer that is maintained by that layer’s
semantics. This in turn can help the developer apply other
patterns, such as movers or the protocol pattern.

Operationally, the developer first specifies an invariant
by defining a layer whose semantics require the invariant
to hold in the initial and final state of every operation; the
operations and the type of state remain the same. The
developer then defines an identity abstraction relation
(connecting states one-to-one). Finally, the proof of the
abstraction relation shows that, if the invariant holds in
some state, running any operation results in a state that
also satisfies the invariant.

Error state. The abstraction pattern can also allow a
developer to defer reasoning about unreachable states by
defining an explicit error state. This is useful at lower-
level layers, which have insufficient information to prove
that certain states are unreachable (e.g., because it is up to
the implementation of higher layers to avoid those states).
This is simpler than an alternative plan that fully describes
what happens in these states, and allows subsequent layers
to treat all of these error states identically.

Operationally, the developer defines a protocol that they
expect to follow (much as in the protocol pattern from
§6.2), and augments the state with a designated error state.
The developer then modifies the execution semantics so
that, if the protocol is not followed, the execution transi-
tions into the error state. Once the execution enters the
error state, it remains in that state forever.

To connect an error-state layer to a lower layer without
an error state, the developer defines an abstraction relation
that allows the high-level error state to correspond to any
low-level state. To connect two layers with error states,
the developer defines an abstraction relation that connects
the error states at the two layers. To finally dismiss the
error state, the developer uses the protocol pattern to show
that an implementation never enters the error state, and
thus the error state is unreachable.

6.4 Other patterns
Retry loop. CSPEC provides a specialized pattern for
reasoning about retry loops. For example, when the mail
server is delivering a message into a mailbox, it guesses
a name that is unlikely to exist (using the current times-
tamp), and attempts to link the new message under that
name. If link returns an error (i.e., the name already
exists), CMAIL guesses a new filename and retries.

Component Lines of code/proof

Core: processes, layers, etc. 4,594
Proof patterns 2,117
Helper: Maps, Sets, etc. 2,869

Total 9,580

Figure 14: Combined lines of code and proof for CSPEC components

The retry loop pattern requires a proof that the body of
the loop either has the correct effect (such as delivering
the message into a mailbox) and exits the loop, or has
no effect and retries. This allows CSPEC to prove that
executing the loop is equivalent to just running the body
once, at exactly the right time (when it finally succeeds),
because it can provably ignore all previous attempts (since
they must have had no effect).

Partitioning. CSPEC provides a partitioning pattern to
reason about disjoint parts of the state. For example,
CMAIL has a separate mailbox for every user. Without
explicit support for partitioning, the developer would need
to reason about pairs of users at every layer of CMAIL—
for instance, showing that an operation is a right-mover
would require considering concurrent operations both on
the same mailbox and on other mailboxes.

To use CSPEC’s partitioning pattern, the developer im-
plements and proves layer A on top of layer B, using
CSPEC’s other patterns, where A and B represent a single
shard of the overall system state. For example, the core
of CMAIL implements the per-user MailServerPerUser
layer on top of the per-user MailFSPath layer, as shown
in Figure 7. The developer must also specify how these
shards are named (e.g., by string username in the case of
CMAIL). The partitioning pattern turns this proven single-
shard implementation into a proven implementation for
many shards (e.g., all users in CMAIL).

As shown in Figure 7, cross-mailbox operations show
up just at the top and bottom layers of the CMAIL stack.
At the bottom layer, the proof must show that mailboxes
are correctly partitioned in the file system—that is, each
mailbox gets its own directory that is independent of all
other mailbox directories. At the top level, the developer
must specify and prove how the entire state of the sys-
tem can be decomposed into per-user partitions. This is
straightforward for CMAIL because the top-level abstract
state (Figure 3) consists of a mailbox per user.

7 Implementation
We implemented CSPEC in Coq. Figure 14 shows the
lines of code, specification, and proof for the major com-
ponents. Developers implement, specify, and prove their
concurrent software in Coq, and CSPEC produces exe-
cutable code using Coq’s extraction support to Haskell.
Our prototype of CSPEC and CMAIL is available at
https://github.com/mit-pdos/cspec.
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One technical difficulty in implementing CSPEC is that
Coq (like many other formal reasoning systems) makes it
cumbersome to reason about infinite objects (i.e., Coq’s
CoInductive), as opposed to arbitrary-sized objects (i.e.,
Coq’s Inductive). This made it hard for us to model
the possibly infinite traces of events produced by the
execution of a concurrent system.

To deal with this, we borrowed an idea from Lynch [29:
§13], taking advantage of the fact that CSPEC is target-
ing only safety properties. A violation of safety can be
observed in a finite prefix of the trace. Thus, we define
trace inclusion in Coq for possibly infinite traces as trace
inclusion for every finite prefix of that infinite trace.

8 Evaluation
This section answers five questions to evaluate CSPEC:

• Can CSPEC enable developers to specify, implement,
and verify concurrent software? §8.1 answers this
in the context of CMAIL, and §8.2 demonstrates that
CSPEC’s patterns are also applicable for a different
style of concurrency: namely, weak shared memory.

• Can software developed using CSPEC actually achieve
speed-ups by taking advantage of concurrency? (§8.3)

• How much effort is required to use CSPEC? (§8.4)

• How important are CSPEC’s patterns? (§8.5)

• What are the trusted components of CSPEC and
CMAIL? (§8.6)

We answer the above questions by exploring two case
studies built using CSPEC: a concurrent mail server
(CMAIL) and a concurrent counter that uses locks im-
plemented on top of an x86-TSO memory model.

CMAIL is a simple but complete mail server that sup-
ports SMTP and POP3. It runs on top of any file system
on Linux and we have tested its compatibility with sev-
eral SMTP and POP3 clients, including the SMTP library
in Go, and the postal and rabid mail server benchmarks.
CMAIL lacks sophisticated features found in standard mail
servers, such as spam filtering, logging, TLS support, etc.

8.1 Verifying CMAIL

To show that CSPEC enables reasoning about concurrency,
we give examples of concurrency from our two case stud-
ies. This subsection describes the examples of concur-
rency from CMAIL, and the next subsection describes our
experience verifying an atomic counter on top of x86-TSO
weak memory.

Figure 15 summarizes the examples of concurrency
from CMAIL, by describing pairs of processes that might
run concurrently, the state that they might access concur-
rently, the plan for dealing with this concurrent execution,
and how we as developers were able to use CSPEC to
formally reason about the correctness of this concurrent

interaction. The rest of this subsection describes these
examples in more detail.

Deliver/Deliver: temp directory. Accepting an incom-
ing message requires CMAIL to first write it to a temporary
directory. However, there can be concurrent deliveries
writing to the same directory at the same time. For cor-
rectness, a CMAIL process includes its PID in the names
of its temporary files, which ensures two processes never
conflict on files in the temporary directory. In CSPEC,
we formally reason about this by showing that operations
on the temporary directory always commute between dif-
ferent processes, because they have different PIDs in the
filenames.

Pickup/Delete. If a user has two connections to CMAIL,
and deletes a message on one connection while picking up
messages via another connection, then the code for pickup,
which lists and picks up messages, might discover halfway
through that it cannot read a message file because the file
has been deleted. CMAIL deals with this by acquiring
a lock (using POSIX flock) on the user’s mailbox, in
both pickup and delete (but not in deliver; concurrency
between deliver and pickup will be discussed next). We
reason formally about this in CSPEC by first proving that
CMAIL follows a protocol that requires holding a lock to
delete any messages, and then showing that reading an
existing message file is a both-mover while the lock is
held.

Deliver/Pickup by another user. When CMAIL delivers
or picks up mail for different users in different processes
the concurrency plan is easy: these operations are inde-
pendent because they operate on different mailboxes. In
CSPEC, we show that operations on different mailboxes
are commutative.

Deliver/Pickup by same user. A user can pick up (list
and read) the messages in their mailbox while CMAIL is
concurrently delivering new messages to that same mail-
box (by creating files). CMAIL handles this like Maildir:
it first creates new messages in a temporary directory,
and then atomically renames them into the mailbox direc-
tory. When a user picks up their mail, CMAIL first calls
readdir to list the files in the mailbox, and then reads
the files in a loop. This is correct even in the presence
of concurrent deliveries, because deliveries never delete
existing files. To reason formally about this in CSPEC,
we show that creating temporary files during delivery is
a right-mover, and the atomic rename by delivery is a
non-mover. On the pickup side, readdir is a non-mover,
but all subsequent reads of existing files are left-movers.

Deliver/Deliver: files in mailbox, plan 1. Concurrent
deliveries into the same user mailbox must ensure they
pick different file names for the new messages. CMAIL
implements two plans for this scenario, to demonstrate
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Process 1 Process 2 State Concurrency plan CSPEC approach

Deliver message Deliver message Temp. directory File names based on PID Both-movers due to commutativity
List mailbox Delete a message Files in mailbox Lock the mailbox directory Protocol: both-movers while holding lock
Deliver to one user Pickup by another user Files in mailbox Per-user directories Both-movers due to commutativity
Deliver to one user Pickup by same user Files in mailbox Atomic rename / readdir Non-mover rename, non-mover readdir
Deliver to one user Deliver to same user Files in mailbox List files by PID and pick next List-per-PID is a mover
Deliver to one user Deliver to same user Files in mailbox Retry link to random filename Retry loop

Figure 15: Examples of concurrency from CMAIL supported by CSPEC.

how different approaches can work. In the first approach
(which differs from Figure 1), filenames in the mailbox di-
rectory are based on the PID of the process that delivered
the message. To pick an available filename, the delivery
process calls readdir to list the directory, and chooses
the next available filename that contains its PID.

Formally reasoning about this turns out to be tricky
in two ways. First, readdir is not a mover, because its
results can be affected by concurrent deliveries. To use
mover-based reasoning, we implemented a function that
filters the output of readdir and returns only the file-
names of the caller’s PID. This PID-filtered readdir
function is a both-mover, because concurrent deliveries
by different processes have filenames with different PIDs.

Second, in the presence of concurrent message deletion,
even PID-filtered readdir is not quite a mover. We solve
this by allowing it to return a superset of files that exist:
that is, it must return all files that exist but can also return
some non-existent files. This suffices because a filename
that is not in the superset is guaranteed to not exist. This
PID-filtered readdir is a right-mover in the presence of
deletion (though not a left-mover), and so we can use the
mover pattern to reason about its concurrent execution.

Deliver/Deliver: files in mailbox, plan 2. The second
plan we implemented for concurrent deliveries to the
same mailbox is to pick a random filename and try using
it. POSIX link returns an error if the file already exists,
so in case of an error CMAIL picks a new random filename
(actually, it uses the current timestamp) and retries. To
reason about this we use the retry pattern, showing that
link either succeeds or returns an error and has no effect.

8.2 Verifying a counter on x86-TSO
CMAIL’s concurrency model is based on processes with
private memory sharing a file system. To demonstrate that
CSPEC can also be used to reason about other concurrency
models, we developed a model of x86-TSO [34], the
predominant memory model of x86 processors. On top of
x86-TSO, we implemented a lock, and used the lock to
implement a counter. The lock implementation is a loop
around an atomic test-and-set instruction, which includes
an implicit write barrier (on x86, this corresponds to a
LOCK prefix on the test-and-set instruction). We used 10
layers to verify this counter, as shown in Figure 16.

The top layer is a counter with two atomic operations:
increment and decrement. The bottom layer, TSO, models
x86-TSO: there is a shared memory and a per-core store
buffer, and individual cores can issue reads, writes, or
atomic test-and-set instructions, as well as perform a write
barrier to flush that core’s store buffer. Every operation at
this bottom layer allows any core to flush any part of its
store buffer at any time.

One challenge in the TSO layer is that background
flushes of store buffers can happen on any core at any
time. To help address this challenge, we showed that
the TSO layer is equivalent to the TSODelayNondet layer
which does not allow store buffer flushes on write (in-
stead, postponing them to a subsequent read, barrier, or
test-and-set).

The LockOwner layer introduces abstract state to keep
track of which core owns the lock, using the abstraction
pattern. Our intention is that the lock protects reads and
writes to a shared memory location. However, this proper
use of the lock is not established until a higher layer
(namely, Lock). As a result, the LockOwner layer uses an
explicit error state (§6.3) to indicate when the locking
rules are not being followed. This error state is proven
to be unreachable in the Lock layer (using the protocol
pattern).

The LockInvariant layer additionally tracks the pre-
vious lock owner as part of the state. This is necessary
because the implementation of lock release does not issue
a write barrier. As a result, even though the lock may
have been released, the lock value in shared memory may
still appear to be locked, and pending writes to shared
data are also in some core’s store buffer. By tracking the
previous lock owner, the LockInvariant layer states an
invariant that either there are no pending writes to the
lock or shared data in any core’s store buffer, or they are
in the previous lock owner’s store buffer. The next layer,
SeqMem, builds on this invariant to present a sequentially
consistent view of shared memory, abstracting away the
store buffer details.

The RawLock layer introduces an Acquire operation
that waits until it can acquire the lock. This layer is
implemented on top of SeqMem by repeatedly trying to
acquire the lock in a loop. The proof is constructed with
the help of CSPEC’s loop pattern.
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Layer name Operations State Semantics Pattern

Counter Inc, Dec Counter value Atomic Inc and Dec AbsLockedCounter Inc, Dec Counter value + lock Atomic Inc and Dec MovLock Read, Write, Acquire, Release SC memory + lock Read/Write allowed only while holding lock ProtRawLock Read, Write, Acquire, Release SC memory + lock Read/Write allowed any time LoopSeqMem Read, Write, TryAcquire, Clear SC memory + lock Single value in memory, no SBs AbsLockInvariant Read, Write, TryAcquire, Clear Mem + SBs + cur/prev LOs SBs empty except current or prev lock owner AbsLockOwner Read, Write, TryAcquire, Clear Mem + SBs + current LO TSO + error state for violating lock protocol AbsTAS_TSO Read, Write, TryAcquire, Clear Mem + SBs TryAcquire grabs lock; Clear releases lock MovTSODelayNondet Read, Write, TestAndSet, Barrier Mem + SBs Reduced number of background SB flushes AbsTSO Read, Write, TestAndSet, Barrier Mem + SBs SB may choose to flush on every operation

Figure 16: Layers used for verifying the x86-TSO locked counter. The operations column describes the Op type for that layer. The state column
describes the abstract state, State, over which the layer’s semantics are defined. The semantics column describes the semantics. The pattern column
indicates which CSPEC proof pattern is used in connecting adjacent layers. “SC” stands for sequentially consistent. “SB” stands for store buffer. “LO”
stands for lock owner.
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Figure 17: Throughput of CMAIL with a varying number of cores.

8.3 Speedup

To demonstrate that CMAIL can take advantage of mul-
tiple cores because it executes concurrently, we run a
mixed workload of SMTP deliveries of new messages and
POP3 requests that read and delete messages. The mix
is an equal ratio of new messages being delivered and
existing messages being read and deleted. Each request
(delivery or pickup) chooses one of 100 users at random.
Although CMAIL supports full-fledged SMTP and POP3
over the network, we simulated SMTP and POP3 requests
on the same machine to stress CMAIL’s scalability. We
ran the experiment on a server with two Intel Xeon CPU,
each with 6 cores running at 3.47 GHz. To keep the
disk from being the bottleneck, we ran CMAIL on Linux
tmpfs. To compare the performance of CMAIL to that of
an unverified implementation, we implemented an equiv-
alent mail server in Go, called GoMail, and measured its
performance in the same setup.

Figure 17 shows the performance (in requests per sec-
ond) for different numbers of cores of both CMAIL and
GoMail. The results show that CMAIL scales well with
more cores. This is because tmpfs can execute the file
system calls of the different CMAIL processes in parallel.
In terms of absolute performance, CMAIL achieves 81-
97% of GoMail’s throughput, depending on the number
of cores.

MailServerComposed78 lines of spec
11 lines of code
65 lines of proof

MailServerPerUser129 lines of spec
0 lines of code

51 lines of proof
MailServerLockAbs63 lines of spec

34 lines of code
470 lines of proof

Mailbox138 lines of spec
0 lines of code

70 lines of proof
MailboxTmpAbs93 lines of spec

25 lines of code
261 lines of proof

Deliver173 lines of spec
34 lines of code

204 lines of proof
DeliverListPid181 lines of spec

27 lines of code
106 lines of proof

MailFS146 lines of spec
0 lines of code

172 lines of proof
MailFSStringAbs166 lines of spec

36 lines of code
128 lines of proof

MailFSString145 lines of spec
0 lines of code

302 lines of proof
MailFSPathAbs200 lines of spec

17 lines of code
72 lines of proof

MailFSPath138 lines of spec
31 lines of code

579 lines of proof
MailFSMerged323 lines of spec

Figure 18: Combined lines of code and proof for CMAIL layers. The
number next to arrow indicates number of lines of code and proof for
the implementation connecting two layers.

8.4 Effort
Figure 18 shows the size of CMAIL: the lines of Coq
code to specify each layer (i.e., define operations, state,
and semantics) and the lines of Coq code required to con-
nect layers (i.e., implement one layer in terms of a lower
layer and prove the correctness of that code). Develop-
ing CSPEC and CMAIL took two people ∼6 months of
part-time effort.

The figure shows that the effort required per layer is
modest. Each layer spec is 100-200 lines of Coq code,
which are largely repetitive, with only small differences
between adjacent layers. Informally, the specs of adjacent
layers differ in roughly half the lines, and even the differ-
ing lines are often similar (e.g., an extra state component
is added everywhere). Better language support, perhaps
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Proof pattern # of uses # of uses
in CMAIL in x86-TSO

Movers 6 2
Abstraction 5 5
Protocol 3 1
Partitioning 2 0
Retry loop 1 1

Figure 19: Use of proof patterns in CMAIL and the x86-TSO example.

along the lines of CIVL’s [22], could eliminate the repeti-
tion. A layer often maps a high-level operation directly
onto a low-level operation, so it should be sufficient to
write the spec only once. For example, CMAIL’s GetPID
is the same in each of the 13 layers.

The code and proof is sometimes shorter than the layer
spec because some code takes advantage of CSPEC’s pat-
terns so well that it requires little additional proof effort.
This is particularly true for the abstraction pattern that
introduces additional state not seen at a higher layer (e.g.,
adding state for a lock that is hidden at a higher layer).

The most significant code and proof effort connects the
MailServerLockAbs and Mailbox layers, where CMAIL
implements atomic pickup. This requires a proof that
pickup’s file reads are left-movers, and inductive rea-
soning about a loop that reads all files. This is partic-
ularly hard because the file read is a state- and argument-
dependent left mover, which requires reasoning about the
set of files that exist in the system after readdir returns.

Evolution. To evaluate how hard it is to make incremen-
tal changes to a verified system in CSPEC, we report the
effort it took us to make several significant changes to
CMAIL as we were developing it. Initially our mail server
supported POP3 retrieval but not deletion. Adding dele-
tion support took about a day: we had to change some
mover proofs because deletion made certain operations
into non-movers. Our initial mail server used plan 1 to
choose unique file names in a mailbox (see §8.1); imple-
menting plan 2 using retry loops with link took us about
a day. Finally, adding support for multiple users took
us about a week. After a day, we realized that manually
adding users to each layer was too tedious, and spent a
week developing the partitioning pattern in CSPEC. After-
wards, supporting multiple users took about a day.

8.5 Patterns

Figure 19 shows the number of uses of a proof pattern
in CMAIL and in the x86-TSO example. Typically each
layer uses one proof pattern, but a few layers are split
into several modules, each module using a distinct proof
pattern. The results show that all patterns are important;
that movers is the most commonly used pattern in CMAIL;
and that abstraction is the most common pattern in x86-
TSO.

8.6 Trusted computing base
Whether CMAIL does the right thing depends on several
unverified assumptions and components. The first assump-
tion is that the top-level specification (Figure 3) captures
the right behavior. Second, the specification of the bot-
tom layer (Figure 6) must be an accurate model of the
underlying file system. Finally, the Haskell runtime and
interpreter used to run CMAIL must behave appropriately.

CMAIL also requires Coq to be sound, but inside of
Coq, CMAIL and CSPEC are fully proven. We used the
Print Assumptions command in Coq to verify that the
end-to-end theorem about correctness of CMAIL does not
depend on any unproven axioms (aside from standard
assumptions like Coq’s functional extensionality).

9 Conclusion
CSPEC is a framework for verifying concurrent systems
software. It uses mover types to simplify reasoning about
both lock-based and lock-free concurrency, with the first
fully machine-checked proofs. To further simplify proofs,
CSPEC has layers and a library of proof patterns. CMAIL
demonstrates that CSPEC can verify all the concurrency
patterns in a Maildir-like mail server. Furthermore, we
demonstrate that CSPEC’s proof pattern can also be used
to prove an atomic lock-based counter on top of x86-TSO
shared memory. CMAIL achieves speedup on a multicore
machine due to concurrency. We hope that CSPEC and its
ideas will help others to verify concurrent software.
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