OpLog: a library for scaling update-heavy data structures

Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich
MIT CSAIL

Abstract

Existing techniques (e.g., RCU) can achieve good multi-
core scaling for read-mostly data, but for update-heavy
data structures only special-purpose techniques exist.
This paper presents OpLog, a general-purpose library
supporting good scalability for update-heavy data struc-
tures. OpLog achieves scalability by logging each update
in a low-contention per-core log; it combines logs only
when required by a read to the data structure. OpLog
achieves generality by logging operations without having
to understand them, to ease application to existing data
structures. OpLog can further increase performance if the
programmer indicates which operations can be combined
in the logs.

An evaluation shows how to apply OpLog to three
update-heavy Linux kernel data structures. Measurements
on a 48-core AMD server show that the result significantly
improves the performance of the Apache web server and
the Exim mail server under certain workloads.

1 Introduction

Systems software often maintains data structures that are
frequently updated but rarely read. LRU lists, for exam-
ple, are usually updated with every access, but read only
during eviction. Similarly, Linux reverse page maps are
updated whenever a physical page is mapped, but read
only when swapping pages out to disk or truncating a
mapped file.

Update-heavy data structures can pose a multi-core
scalability bottleneck. Locks protecting them force se-
rialization; even updates with atomic instructions incur
expensive transfers of contended cache lines. As we show
in §3, the Linux kernel suffers from such scalability bot-
tlenecks at high core counts.

An existing approach is to apply updates to per-core
instances of the data structure, thereby avoiding serial-
ization and cache line transfers [10, 13]. This problem
has been studied for the specific case of a counter “data
structure”: SNZI [15] and Refcache [9] demonstrate how
to merge updates to per-core counters that are frequently
updated but rarely read.

The programmer work required to modify a data struc-
ture so that it is factored into per-core instances can be
substantial. The hard part is usually designing the read
strategy: the per-core data must be combined to produce
a consistent value, one that could have been produced by

the original serial implementation. As an example, con-
sider reading a global LRU list that has been factored into
per-core lists. Finding the globally least-recently used ob-
ject is likely to require comparing timestamps of the head
elements of all the n per-core lists. This kind of code has
to be designed and written by hand; we do not know of
any general-purpose, scalable tools to help programmers
factor data structures while preserving consistency.

This paper presents a general-purpose approach for
scaling data structures under update-heavy workloads,
and an implementation of this approach in a library called
OpLog. “Update-heavy” means that most operations are
updates without return values. The key insight is that
such updates can be deferred until required by opera-
tions whose return values require reading the global state.
OpLog’s approach is to initially record each update in
a per-core log. Before a read operation, OpLog applies
the updates in all the logs to the data structure to bring it
up to date. OpLog time-stamps each log entry with the
current CPU cycle counter (§6.1) and applies entries from
the logs in timestamp order.

The OpLog approach has three main benefits. First,
it ensures that updates scale, since each update only ap-
pends to a local per-core log, incurring no lock contention
or cache line transfers. Second, logging and deferred
execution can be transparently applied to a wide variety
of existing operations. Finally, the per-core log repre-
sentation makes some optimizations easy which might
be hard to apply to ordinary data structures, particularly
absorption.

OpLog faces some challenges. First, applying it to an
existing data structure might be difficult. Second, it might
impose high overhead for log manipulation. Third, storing
all the log entries, for every object in the system, might
require a large amount of memory. OpLog addresses
these challenges using the following ideas.

First, OpLog provides an API that is easily layered on
top of an existing object type. OpLog intercepts method
calls to each object. It turns each update call into an
append to a local per-core log associated with the object.
For a read method, OpLog first calls the underlying update
methods recorded in the logs in timestamp merge order,
and then calls the underlying read method.

Second, the programmer can direct OpLog to combine
operations in the log when allowed by the semantics of
the data structure. For example, this might allow OpLog

to implement a set “delete” operation by removing a pre-
vious “insert” from the local log. This “absorption” can
keep the logs short, reducing the cost of the next read
operation.

Third, OpLog reduces memory use by adaptively en-
abling itself only when needed. That is, if a data structure
receives many updates, OpLog stores the updates in per-
core logs; otherwise, it maintains only the underlying data
structure, and immediately applies updates to it.

To demonstrate that OpLog can improve the perfor-
mance of real systems, we implemented two prototypes:
one in C++ for user-space applications, and one in C
for the Linux kernel. We applied OpLog to several data
structures in the Linux kernel: the global list of open
files, the virtual memory reverse map, the inotify up-
date notification queue, and the reference counter in the
directory name cache. A performance evaluation on a
48-core AMD server shows that these uses of OpLog im-
prove the performance of two real applications. OpLog
removes contention on reference counts in the directory
name cache, encountered by the Apache web server, al-
lowing Apache to scale perfectly to 48 cores when serving
a small number of static files. OpLog also removes con-
tention on the virtual memory reverse map, encountered
by the Exim mail server, improving its performance by
35% at 48 cores over a lock-free version of the reverse
map under the workload from MOSBENCH [7].

The rest of the paper is organized as follows. §2 reviews
related work. §3 provides examples of update-heavy data
structures in the Linux kernel. §4 outlines OpLog’s ap-
proach, and §5 describes OpLog’s library interface. §6
describes OpLog’s implementation and discusses modern
processor support for synchronized clocks. §7 evaluates
OpLog. §8 identifies some areas of future work, and §9
concludes.

2 Related work

The best route to scalability is to eliminate unneces-
sary inter-core sharing altogether. For example, Linux’s
CLONE_FILES eliminates the contention involved in file
descriptor allocation by giving threads separate descriptor
spaces. OpLog targets cases where it is not convenient to
eliminate sharing.

OpLog is in spirit similar to read-copy update
(RCU) [26], which is heavily used in the Linux ker-
nel [27]. Both provide infrastructure to help programmers
implement low-contention shared data structures. OpLog
targets update-intensive data structures, while RCU tar-
gets read-intensive data structures.

Flat combining reduces contention costs [18] by having
one core apply the updates of all the cores contending
to write a datum. Flat combining avoids performance
collapse from lock contention and can improve locality.
OpLog delays applying updates until needed by a read

operation, which gives it a higher degree of batching and
locality than flat combining. The delaying also enables
OpLog to perform optimizations such as absorption and
therefore scale better (e.g., near-ideal scaling if most op-
erations are absorbed); flat combining has no equivalent
of absorption. In flat combining, every operation requires
accessing a shared memory location, which can be a scala-
bility bottleneck. OpLog defers execution of updates, and
uses timestamps to establish a global order of operations
in a scalable way, to eliminate accesses to shared memory
locations when logging an update.

Tornado’s Clustered Objects [16], which were also used
in K42 [3], help programmers improve scalability by al-
lowing dynamic choice of representation. Each “virtual”
object can have a per-core partitioned, distributed, or
replicated implementation at runtime, depending on the
workload. The programmer must implement a strategy
for combining the per-core data consistently, e.g. using an
invalidation and update protocol [16]. OpLog’s logs, on
the other hand, provide a single consistency strategy that
works for any data structure. By focusing on a specific
consistency strategy, OpLog is able to implement opti-
mizations such as batching and absorption. OpLog shares
some implementation techniques with Clustered Objects;
for example, OpLog’s per-core hash table to avoid using
per-core logs for all object instances is similar to the per-
processor translation tables in Clustered Objects. K42’s
online reconfiguration [30] could be used to switch be-
tween different implementations of a data structure at
runtime, such as switching between OpLog when updates
are common and a more traditional implementation when
updates are rare.

OpLog can be viewed as a generalization of distributed
reference counter techniques [3, 4, 14, 25]. Applying
OpLog to a reference counter creates a distributed counter
similar to Refcache [9]. OpLog makes it easy for pro-
grammers to apply the same techniques to data structures
other than counters.

OpLog applies some distributed systems ideas to multi-
core software. Per-core logs of operations are similar
to Bayou’s per-device operation logs [31]. OpLog also
borrows Bayou’s re-ordering of certain logged operations.
EPaxos [29] and Tango [5] defer execution of operations
with no return value by adding them to a log. OpLog ap-
plies this idea to shared-memory data structures, and uses
synchronized clocks to order operations without explicit
communication.

Barrelfish [6] and Fos [34] organize a multicore kernel
as a set of semi-independent cores interacting only via
message-passing; their goal is to reduce contention by
eliminating shared-memory data structures. OpLog is
aimed at multi-core software that shares data.

3 Problem

In order to illustrate situations where OpLog can help,
this section explores the scalability of three example
data structures in the Linux 3.8 kernel: the reverse page
map (rmap), the filesystem change notification queues
(inotify), and the pathname lookup cache (dcache).
These data structures are update-heavy, are limited by
multi-core contention under some workloads, and are of-
ten updated in situations where the update can be deferred:
that is, they are good candidates for OpLog. As a preview,
we compare the “stock” Linux implementations of these
examples with OpLog implementations (described in §4—
6). We focus on Linux because it has been extensively
optimized for multi-processors [7].

The stock implementations use spinlocks. Linux’s
spinlocks suffer from performance collapse under con-
tention [8], and their cost dominates performance for
our benchmarks. Scalable locks [28] or lock-free data
structures would increase performance. They would pro-
vide only limited scalability, however; cores would still
be bottlenecked by contention to write shared data. We
demonstrate this by re-implementing several of the exam-
ples using atomic instructions rather than locked critical
sections. These lock-free implementations are limited
by contention from concurrent writes to shared data, and
OpLog is still faster.

We present results from a 48-core x86 machine, com-
posed of 8 6-core AMD Opteron Istanbul chips. Exper-
iments on a large Intel machine generate similar results.
All measurements in this paper are averages of three runs;
there is never much variation.

Example: reverse page map (rmap). Linux’s reverse
map (rmap) records, for each physical page, all page table
entries that map that page. Linux reads these reverse
mappings when it truncates a file or swaps a physical
page out to disk, in order to find (and then delete) all page
table entries that refer to the deleted page(s). The fork(),
exit(), and mmap () system calls update the rmap, but
don’t need to read it.

The Linux designers have heavily optimized the rmap
using interval trees [21, 22, 24]. Each file has an asso-
ciated interval tree protected by a lock. A file’s interval
tree maps intervals of the file to virtual address mappings.
Each virtual address mapping maps one or more pages
from the file. The Linux rmap implementation can be-
come a bottleneck when many processes simultaneously
try to map the same file. For example, simultaneous cre-
ation of many processes is likely to cause contention for
the lock protecting the interval tree of the libc library,
because creating a process entails creating virtual address
mappings for libc and inserting the mappings into the libc
rmap interval tree.

The fork benchmark measures the performance of

80000
70000

ith OpLog —+—
lock-free

o
2 60000
=
550000
i
= 40000
=N
S 30000
=}
= 20000
E

10000

0]
1 6 12 18 24 30 36 42 48
of cores
(a) Performance.
50 —
with OpLog —+—

L 40 lock-free
E
£30 [~
]
3
520 [~
=
=}
<
S0 -

0 Pt e L |
1 6 12 18 24 30 36) 48
of cores

(b) Percent of execution time spent waiting for cache line transfers in
the rmap.

Figure 1: fork benchmark results, exploring reverse map (rmap) scala-
bility.

the rmap. The benchmark creates one process on each
core. Each process repeatedly calls fork to create a child
process that immediately calls exit. This stresses the
rmap, because fork and exit modify rmap interval trees
by inserting and removing virtual address mappings.
Figure 1(a) shows the result. The x-axis shows the
number of cores and the y-axis shows the throughput in
forks per second. The “stock” line shows the performance
of stock Linux; the limiting factor is contention for the
lock on the libc rmap interval tree. The libc rmap interval
tree lock is most contended because the benchmark pro-
cesses have more virtual address mappings for libc than
any other files, so fork and exit insert and remove from
the libc rmap interval tree more than other interval trees.
In order to find out whether the locks were the only
reason for rmap’s failure to scale well, we wrote a new
rmap that replaces the interval trees with lock-free lists.
The “lock-free” line in Figure 1(a) shows that its perfor-
mance achieves about twice the performance of the stock
rmap. The limiting factor is the cost of fetching cache
lines that have been recently updated by another core.
Figure 1(b) shows the percent of total execution cycles
the fork benchmark spends waiting for cache lines in the
lock-free rmap code. With 40 cores, roughly 35% of the
execution time is spent waiting for cache line transfers.
To show there is room for improvement, the “with
OpLog” line shows the performance of the rmap imple-
mentation described in §4.3, Figure 7, and §5.2. OpLog

1000
900
800
700
600
500
400
300
200

L e L O O OV I R
1

6 12 18 24 30 36 42 48
of cores

with OpLog —+—
stock

Throughput (notifications/msec)

Figure 2: inotify benchmark results.

arranges this version’s data so that most writes are to
cache lines used by just one core; thus the writes don’t
require cache line invalidation and movement, and are
cheap. As a result the OpLog rmap is considerably faster
than the lock-free rmap. §7 explores the performance of
the OpLog-based rmap further.

Example: inotify queues. Inotify is a kernel subsys-
tem that reports changes to the filesystem to applications.
An application registers a set of directories and files with
the kernel. Each time one of them is modified, inotify
appends a notification to a queue, which the application
reads. File indexers, such as Recoll [2], rely on inotify in
order to re-index new or modified files.

Inotify is interesting because the notification queue
is both updated and read from frequently. The kernel
serializes updates to the queue with a spinlock. This
helps preserve the correct order when operations occur on
different cores, e.g., one core creates a file, while another
deletes it.

Our inotify benchmark creates a set of files, registers
the files with inotify, and creates a process that continu-
ously dequeues notifications. The benchmark then creates
one process on each core, each of which repeatedly mod-
ifies a random file in its non-overlapping subset of the
files.

Figure 2 presents the performance of the benchmark.
The “stock” line shows that throughput increases up to
three cores, then collapses due to spinlock contention
caused by multiple cores simultaneously trying to queue
notifications. The “with OpLog” line demonstrates that
even with frequent reads it is possible to improve the
queue’s performance using OpLog. Performance de-
creases with six or more cores because each OpLog read
must check more per-core logs.

Example: dcache and pathname lookup. In order to
speed up pathname lookups, the Linux kernel maintains
a mapping from directory identifier and pathname com-
ponent to cached file/directory metadata. The mapping is
called the dcache, and the entries are called dentrys.
Each file and directory in active or recent use has a

70000 [~

|with OpLog —+—
lock-free

stock ==+--

Throughput (stat/msec)

1 6 12 18 24 30 36 42 48
of cores

(a) Performance.
100 —
80
60 —

40 [T

% of execution time

20 with OpLog —+—

lock-free

L ETU SESETL FETURY SRR TE FRUETE FERTEY PR S
1 6 12 18 2 30 36) 48

of cores

(b) Percent of execution time spent waiting for cache line transfers in
reference counting.

Figure 3: stat benchmark results, exploring pathname lookup
(dcache) scalability.

dentry. A dentry contains a pointer to the parent direc-
tory, the file’s name within that directory, and metadata
such as file length.

The dcache is well parallelized using RCU [23], with
one exception. In order to allow lock-free consistent reads
of multiple slots of a dentry, pathname lookup reads
a per-dentry generation number before and then after
reading the dentry’s fields; if the number changes, the
dentry has changed, and the kernel must re-try the reads.
If the kernel decides to use the dentry, it must increment
the dentry’s reference count; it uses a spinlock to ensure
the atomicity of the generation number check and the
increment.

The stat benchmark creates one thread per core; all
threads repeatedly call stat on the same file name. Fig-
ure 3(a) shows the resulting performance. The x-axis
shows the number of cores and the y-axis shows through-
put in stat operations per millisecond. The “stock” line
shows that Linux’s implementation achieves no parallel
speedup; it is limited by the spinlock mentioned above.

To see whether the spinlock was the only scaling limit,
we implemented a lock-free scheme. The lock-free ver-
sion packs the generation count and reference count into
a single cache line, and uses an atomic compare-and-
exchange instruction to conditionally increment the ref-
erence count. This lock-free implementation also scales
poorly (see the “lock-free” line). The reason is contention
in the compare-and-exchange; the cores spend much of

| | | | | | |
1 6 12 18 24 30 36 42 48
of writers

Figure 4: Average time for a write to a shared cache line, as a function
of the number of simultaneous writing cores.

their time re-trying the instruction. Figure 3(b) supports
this point, showing the fraction of total run-time that is
spent in the reference counting code; with more than a
few cores, this code accounts for almost all of the total
time.

To see how much room there is for improvement, the
graphs include the performance of a version that uses a
distributed reference counter [9] optimized using OpLog
(see §5.2). It increments a local reference count; if it then
sees that the generation count changed, it decrements the
local count and retries. The “with OpLog” line in Fig-
ure 3(a) scales nearly perfectly, and shows the potential
for improvement by avoiding contention on locks and
shared cache lines.

3.1 The cost of write contention

The examples above spend much of their time waiting
to fetch cache lines during writes; the amount of time
increases with the number of contending cores. This
section explores the cost of contended writes, and notes
that even a single contended write can take as much time
as an entire system call.

Figure 4 shows the time to complete a single write when
a varying number of cores are simultaneously writing the
same location. Each core uses a cpuid instruction to
wait for its write to complete. As the number of writers
increases from 2 to 48, the average time to execute a store
increases from 182 to 8182 cycles. We also measured the
average time to execute a contended atomic increment; it
is only about 1.5% longer than for a mov.

Figure 4 shows that the time for a write is roughly lin-
ear in the number of cores writing the same location. The
fundamental reason is that the cache coherence system
serializes the writes: only one core at a time is allowed
to write, and the others must wait their turn [11, 19]. Be-
tween one turn and the next, the cache line must be moved
from one core to the next; this movement takes between
124 cycles (between cores on the same chip) and 550 cy-
cles (between cores on different chips that are separated
by multiple interconnect hops). The slope in Figure 4
is roughly 160 cycles per core, which is consistent with
these inter-core transfer times.

System call Latency

open 2618 cycles
close 770 cycles
mmap 849 cycles
dup 387 cycles

Figure 5: Single core latency of several Linux system calls.

The write times Figure 4 can easily dominate time
spent in the kernel, in the sense that even a single highly
contended write can take much longer than a typical (un-
contended) system call. Figure 5 illustrates this with some
typical uncontended system call times from Linux 3.8.

4 OpLog design

OpLog helps update-intensive data structures scale well
on multi-processors by reducing contention. It is intended
to be easily and transparently layerable on existing data
structure implementations, to make few assumptions so
that it works with a wide variety types, and to support
a number of programmer-enabled optimizations. This
section describes OpLog’s design, and concludes with an
example of its use.

4.1 The OpLog approach

OpLog timestamps each update operation, appends the op-
eration to a per-core log, and only merges and executes the
logged operations before the next read operation. Almost
any “deferrable” update can be safely logged for later
execution, which allows OpLog to avoid having to know
anything about the underlying data type. A deferrable up-
date is one whose semantics allow its side-effects to take
place after it returns. Blind update methods typically have
“void” return values, so that the caller can’t immediately
tell whether the method call did anything.

By default OpLog executes logged updates in temporal
order. For example, consider a linked list. If a process
logs an insert operation on one core, migrates to another
core, and logs a remove operation, the remove should
eventually execute after the insert. OpLog relies on times-
tamps from a system-wide synchronized clock to tell it
how to order entries in different cores’ logs'. This or-
dering ensures linearizability, making OpLog compatible
with existing data structure semantics. Reading the clock
is fast, much faster than (for example) maintaining the
shared-memory data required to provide causal consis-
tency.

When a developer applies OpLog to a type, OpLog
interposes on this “underlying” type’s methods. For each
object of the OpLog-augmented type, OpLog creates an
internal instance of the underlying type, and a log for each
core. OpLog requires the programmer to indicate which

"Modern Intel and AMD processors provide synchronized clocks
via the RDTSC and RDTSCP instructions; see §6.1 for more details.

methods of the underlying type are deferrable updates,
and which involve reads. Instead of executing an update
method immediately, OpLog appends an entry indicating
the method, its arguments, and the current time to the
local per-core log. OpLog’s interposed read methods first
execute the operations from all the logs in timestamp or-
der, calling the underlying update methods on its internal
instance of the object, and then calls the underlying read
method.

Update operations in OpLog are fast because they incur
no contention. Each core appends to a log dedicated to
that core. That log’s cache lines are likely to remain in
the core’s cache in exclusive mode, so that writes to them
are very fast. OpLog acquires a per-core lock protecting
the per-core log; this lock is not usually contended, and
its cache line usually stays exclusive in the local cache,
so the lock acquisition is fast.

OpLog only incurs contention and cache line transfers
during a read operation. The reading core must acquire all
the locks protecting the per-core logs, and must fetch the
cache lines containing the logs. Then the core executes
all the logged operations. While the locks and cache
line movement may be expensive, their cost is usually
amortized over the execution of many logged operations.
This amortization often causes OpLog read operations
to be faster than directly executing each operation on
shared data; in the latter case, every operation involves
a contented lock acquisition, invalidation of other cores’
copies of the shared data, and movement of the shared
cache lines.

4.2 OpLog optimizations

OpLog facilitates several optimizations that reduce inter-
core communication.

Batching updates. OpLog’s deferred execution of up-
dates leads it to execute them in batches. This improves
locality, since the data being updated remains in the cache
of the processor that applies the updates. The main cost
is pulling the log entries to the core that is processing
the logs; this is often less expensive than it would have
been to move the data to each of the cores executing the
original operations. Flat combining [18] has similar bene-
fits, but OpLog can batch more by deferring updates for
longer.

Absorbing updates. It is often possible (under pro-
grammer direction) for OpLog to take advantage of the
semantics of the target data structure to “absorb” log op-
erations, in two ways.

First, if a new operation cancels the effect of an op-
eration that is already in the local per-core log, OpLog
removes the existing operation rather than adding the new
one. For example, if the underlying type is a set, then a

new remove operation may cancel an existing insert of
the same item.

Second, if multiple operations can be represented by
a single operation, OpLog combines the log entries. For
example, OpLog can combine multiple increment opera-
tions on a counter into a single “add n” operation.

Both forms of absorption reduce the size of the logs, so
that the read that eventually executes them has less work
to do.

Allocating logs. Often only a few instances of a data
structure are contended and will benefit from OpLog. To
avoid the costs of logging for low-contention instances,
OpLog only allocates log space for recently used objects.
If an object has not been updated recently on a given core,
OpLog applies all updates to that object from other cores’
logs (if any), and then frees the local log space.

4.3 Example: a logging rmap

We illustrate the use of OpLog by applying it to the Linux
reverse map (rmap) discussed in §3. Three rmap opera-
tions are relevant: “add” and “remove,” which are called
when a process maps or unmaps a page from its address
space, and “truncate,” which is called when a file is trun-
cated and the file’s pages must be removed from all ad-
dress spaces. “Add” and “remove” are deferrable updates
and are common; “truncate” reads but is relatively rare.

An OpLog-rmap consists of a single internal underlying
rmap instance, a lock protecting it, a log per core, and a
lock for each log. The OpLog-rmap “add” and “remove”
methods append a timestamped operation to the current
core’s per-core log. The OpLog-rmap “truncate” acquires
all the per-core log locks and the rmap instance lock,
merges the logs by timestamp, applies all log records
to the internal rmap by calling the underlying rmap’s
“add” or “remove,” truncates the logs, and then calls the
underlying “truncate” on the internal rmap.

For increased performance, the programmer can direct
OpLog to use absorption to reduce the number of log
entries. If a core is about to log a removal of a region, it
can check its log for an earlier addition of the same region;
if one exists, OpLog can remove the addition from its log
and not log the removal.

S The OpLog library

This section presents the detailed design of the OpLog
library. The design addresses two main challenges:

e How can developers apply OpLog without changing
existing interfaces or data structures?

e How can developers expose the optimization oppor-
tunities like absorption to OpLog without having to
customize OpLog for each use case?

Method call Semantics

Object::1log(Op* op)
Object: :synchronize()
Object::unlock()

Log: :push(Op* op)
Log::apply

Log: :try_absorb(Op* op)
Op::exec()

add op to a per-core log, implemented by a Log object

acquire a per-object lock, and call apply on each per-core Log object
release the per-object lock acquired by synchronize ()

insert op into a per-core Log object

sort and execute the operations from Log

try to absorb an op

execute the operation

Figure 6: OpLog interface overview.

5.1 OpLog API

There are two OpLog implementations, one in C++ for
user-level programs, and one in C for the Linux kernel.
This section presents the C++ interface because its syntax
is clearer.

To use OpLog, a developer starts with the uniprocessor
implementation of a data structure type, called the “un-
derlying” type. The developer wraps an instance of the
underlying type in a new type that will be publicly visible,
called the OpLog-augmented type. The augmented type
must be a sub-class of OpLog’s Object class. Figure 7
shows an example, in which a new Rmap type is wrapped
around the underlying IntervalTree<Mapping> type.

The programmer then creates a method for each kind
of deferrable update. This method must create a sub-type
of class Op; each log entry is an Op. Each kind of Op
stores that operation’s arguments. The update method
calls 1og() to add the Op to the local per-core log. The
Op’s exec() function calls the corresponding method of
the underlying type, applying it to the internal underlying
instance wrapped in the augmented type. OpLog calls the
exec() functions when reading the logs.

Finally, the programmer creates a method wrapping
each of the underlying type’s non-deferrable-update meth-
ods. The wrapper must call synchronize() to read the
logs and apply them to the internal instance, and then call
the underlying type’s method on that instance.

OpLog’s 1og() and synchronize() functions hide
the logs from the developer, simplifying the developer’s
task and allowing OpLog scope for optimization. By
default, synchronize acquires locks on all per-core
logs, merges the logged operations by timestamp, calls
try_absorb on each operation (see §5.2), and calls exec
for each operation. The locks ensure that at most one core
is reading an object’s logs. To avoid consuming too much
memory, OpLog invokes synchronize if a core’s log
grows too long.

5.2 Type-specific optimizations

OpLog allows the programmer to optimize log handling
by parameterizing the Object type with a customizable
Log type. A Log type describes a per-core log, and

must support the push, apply, and try_absorb meth-
ods shown in Figure 6.

struct Rmap :
public:
void add(Mapping® m) { log(AddOp(m)); }
void rem(Mapping* m) { log(RemOp(m)); }

public Object<Log> {

void truncate(off_t offset) {
synchronize();
// For each mapping that overlaps offset..
interval_tree_foreach(Mapping® m, itree_, offset)
// ..unmap from offset to the end of the mapping.
unmap (m, offset, m->end);
unlock();
}

private:
struct AddOp : public Op {
AddOp (Mapping® m) : m_(m) {}
void exec(Rmap* r) { r->itree_.add(m_); }
Mapping® m_;
}

struct RemOp : public Op {
RemOp (Mapping® m) : m_(m) {}
void exec(Rmap* r) { r->itree_.rem(m_); }
Mapping® m_;

}

IntervalTree<Mapping> itree_;

}

Figure 7: Using OpLog to implement a communication-efficient rmap.

Consider a reference counter supporting 3 operations:
increment (inc), decrement (dec), and reading the count
(read). There is no need for true logging in this case;
very specialized per-core “logs” consisting of a simple
counter are enough. To do this, the programmer imple-
ments a CounterLog class, as shown in Figure 8. The
CounterLog’s push just immediately applies the inc or
dec Op to the local counter. When the counter needs to be
read, OpLog’s synchronize calls CounterLog’s apply,
which sums the per-core counters. Executing operations
directly on per-core counters reduces storage overhead
and in most cases performs better than queuing operations.
Furthermore, the dynamic allocation of logs ensure that
if a counter is not heavily used, the space overhead is
reduced to just the shared counter.

The OpLog version of a distributed counter has the
same performance benefits as previous distributed coun-
ters, but is more space efficient when it is not contended.

struct Counter : public Object<CounterLog> {

struct IncOp : public Op {

void exec(uint64_t* v) { *v = *v + 1; }
}
struct DecOp : public Op {

void exec(uint64_t* v) { *v = *v - 1; }

}

void inc() { log(IncOp(Q)); }
void dec() { log(DecOp()); }

uint64_t read() {
synchronize();
uint64_t r = val_;
unlock();
return r;

3

uint64_t val_;
}

struct CounterLog : public Log {
void push(Op* op) { op->exec(&val.); }

static void apply(CounterLog* gs[], Counter® c) {
for_each_log(CounterLog® q, Qs)
c->val_ += g->val_;

}

uint64_t val_;
}

Figure 8: Using OpLog to implement a distributed reference counter.

This OpLog distributed counter is the one that §3 mea-
sured (see Figure 3(a)).

The logging rmap design can also benefit from a type-
specific Log, to support absorption. push, when called
with a rem Op, would check if the mappings to be removed
have an add in the local core’s log; if so, push would
remove the logged add instead of logging the rem. Thus
mappings that are added and deleted on the same core will
be particularly efficient. To ensure that combining add
and rem operations is safe, the logging rmap must prevent
a region identifier (pointer to a vim_area_struct object)
from being reused if that identifier appears in some core’s
log; it does this by incrementing the reference counts of
vm_area_struct objects in the log.

For rmap, it is not uncommon that one core maps a
file and another core unmaps it; for example, the par-
ent might map, and a child unmap on another core. To
deal with this case, the OpLog rmap performs absorption
during synchronize by overriding try_absorb. If the
operation passed to try_absorb is a RemOp and OpLog
has not yet executed the AddOp that inserts the Mapping,
try_absorb removes both operations from the log of
operations. try_absorb can tell if OpLog executed a
particular AddOp by checking if the Mapping member
variable has been inserted into an interval tree.

6 Implementation

Both the C++ and the C implementations of OpLog are
about 1000 lines of code.

To implement dynamic log space allocation, OpLog
maintains a per-core hash table for each type. There
can be at most one object in a table for each hash value.
Only objects in a core’s table can have a log on that core.
When an object needs a log but doesn’t have one, OpLog
evicts the object currently in the same hash slot, after
synchronize()ing it. The result is that the table will
tend to contain recently-used objects.

6.1 Synchronized timestamp counters

OpLog assumes that cores have synchronized CPU times-
tamp counters. We were unable to ascertain whether coun-
ters are in fact synchronized on modern processors despite
consulting the specifications, several Intel and AMD en-
gineers, and several computer architecture researchers.
In lieu of an official guarantee, we ran an experiment
to determine if we can observe timestamp counter skew.
In our experiment, we chose pairs of cores, and repeat-
edly issued RDTSC on the first core, stored the result in a
shared-memory location, read the value on a second core,
and compared it with the value from RDTSCP on that core
(which will not be re-ordered before the memory read).

Running this experiment on two different 8-socket ma-
chines (one with a 10-core Intel Xeon E7-8870 CPU in
each socket, and one with a 6-core AMD Opteron 8431
CPU in each socket), we observed that the second times-
tamp (RDTSCP) is always higher than the first timestamp
(RDTSC), across all pairs of cores and many iterations.
This result suggests that hardware in practice provides the
guarantee needed by OpLog.

Furthermore, we observe that modern hardware already
has active clock synchronization between cores and be-
tween sockets. Both machines have been running continu-
ously for about 45 days at the time of the experiment, with
timestamp counters starting at zero on all cores. Since the
latency for uncontended communication through shared
memory is at most ~1000 cycles, our experiment demon-
strates that the clock skew was less than 1000 cycles
over 45 days (10'© cycles), which is an accuracy of about
10~13. Quartz crystal oscillators achieve accuracies of at
most 10719 [33: §2], and Intel CPUs can operate on sys-
tem reference clocks with just 104 accuracy [20: §2.8];
thus, there must be some protocol synchronizing times-
tamp counters across cores and sockets to achieve 10713
accuracy.

We believe OpLog provides compelling evidence that
synchronized timestamp counters have important soft-
ware applications, and should be guaranteed by hardware;
indeed, some other software systems already assume this
is the case [32]. For hardware that cannot provide strict
guarantees but can bound clock skew, OpLog could use a

technique from Spanner [12], delaying commits for the
maximum skew interval.

7 Evaluation

This section answers the following questions:

e Does OpLog improve whole-application perfor-
mance? Answering this question is challenging be-
cause full applications stress many kernel subsys-
tems; even if some kernel data structures are opti-
mized using OpLog, other parts may still contain
scalability bottlenecks. Nevertheless, we show for
two applications that OpLog benefits performance.

§7.1)

e How does OpLog affect performance when a data
structure is read frequently? We answer this question
by analyzing the results of a benchmark that stresses
the rmap with calls to fork and truncate. (§7.2)

e How important are the individual optimizations that
OpLog uses? To answer this question we turn on
optimizations one by one, and observe their effect.

(87.3)

e How much effort is required of the programmer to
use OpLog compared to using per-core data struc-
tures? We answer this question by comparing the
effort required to apply OpLog and the per-core
approach to three subsystems in the Linux kernel.

(8§7.4)

7.1 Application performance

Since OpLog is focused on scaling updates to data struc-
tures that have relatively few reads, we focus on work-
loads that generate such data structure access patterns;
not every application and workload suffers from this kind
of scalability bottleneck. In particular, we use two appli-
cations from MOSBENCH [7]: the Apache web server and
the Exim mail server. These benchmarks stress several
different parts of the kernel, including the ones that the
microbenchmarks in §3 stress.

Apache web server. Apache provides an interesting
workload because it exercises the networking stack and
the file system, both of which are well parallelized in
Linux. When serving an HTTP request for a static file,
Apache stats and opens the file, which causes two path-
name lookups in the kernel. If clients request the same file
frequently enough and Apache is not bottlenecked by the
networking stack, we expect performance to eventually
bottleneck on reference counting the file’s dentry, in the
same way as the pathname microbenchmark in §3 (see
Figure 3(a)).

We configured the Apache benchmark to run a sepa-
rate instance of Apache on each core and benchmarked

IM —

OpLog —+—
800k —lock-free

2
3 stock —=+--
g
Z 600k [~
&
2 400k [~
=
2
E
& 200k =
A x 1 IS e
0
1 6 12 18 24 30 36 42 48

of cores

Figure 9: Performance of Apache.

Apache with HTTP clients running on the same machine,
instead of over the network. This configuration eliminates
uninteresting scalability bottlenecks and excludes drivers.
We run one client on each core. All clients request the
same 512-byte file.

Figure 9 presents the throughput of Apache on three
different kernels: the stock 3.8 kernel and the two kernels
used in the pathname example in §3. The x-axis shows
the number of cores and the y-axis shows the throughput
measured in requests per second. The line labeled “stock”
shows the throughput of Apache on Linux 3.8. The ker-
nel acquires a spinlock on the dentry of the file being
requested in order to atomically check a generation count
and increment a reference counter (see §3). This line goes
down after 24 cores due to contention on the spinlock for
a dentry.

The line labeled “lock-free” shows the throughput after
we refactored the code to remove the lock with a condi-
tional compare-and-exchange instruction (as described in
§3). This line levels off for the same reasons as the line
in Figure 3, but is higher because Apache does a lot of
other work in addition to checking the generation count
and incrementing the reference count of a dentry.

The line labeled “OpLog” shows throughput when us-
ing reference counters implemented with OpLog (as de-
scribed in §4), which scales perfectly with increasing core
counts. The distributed counters built with OpLog apply
increments and decrements to per-core counters, avoiding
any inter-core communication when incrementing and
decrementing a reference counter.

Exim mail server. We configure Exim [1] to operate in
amode where a single master process listens for incoming
SMTP connections via TCP and forks a new process for
each connection, which accepts the incoming mail, queues
it in a shared set of spool directories, appends it to the
per-user mail file, deletes the spooled mail, and records
the delivery in a shared log file. Each per-connection
process also forks twice to deliver each message.

The authors of MOSBENCH found that Exim was bottle-
necked by per-directory locks in the kernel when creating
files in spool directories. They suggested avoiding these

16000
14000
12000
10000
8000
6000
4000
2000

OpLog —+—
lock-free

Throughput (messages/sec)

24
of cores

Figure 10: Performance of Exim.

locks and speculated that in the future Exim might be
bottlenecked by cache misses on the rmap in exit [7].
We run Exim with more spool directories to avoid the
bottleneck on per-directory locks.

Figure 10 shows the results for Exim on three different
kernels: the stock 3.8 kernel and the two kernels that the
fork and exit microbenchmark uses in §3 (see Figure 1).
The results in Figure 10 show that the performance of
Exim plateaus on both the stock kernel and the kernel
with a lock-free rmap. Exim scales better on the kernel
with OpLog, but at 42 cores its performance also starts
to level off. At 42 cores, the performance of Exim is
becoming bottlenecked by zeroing pages that are needed
to create new processes.

7.2 Read intensive workloads

One downside of using OpLog for a data structure is
that read operations can be slower, because each read
operation will have to execute synchronize to collect
updates from all cores, and OpLog will not be able to take
advantage of batching or absorption.

To help understand how reads affect the performance
of OpLog, we wrote a version of the fork benchmark that
calls truncate to trigger reads of the shared rmap. This
fork-truncate benchmark creates 48 processes, one
pinned to each core, and 48 files, and each process mmaps
all of the 48 files. Each process calls fork and the child
process immediately calls exit. After a process calls
fork a certain number of times, it truncates one of the
mmaped files by increasing the file length by 4096 bytes,
and then decreasing the file length by 4096 bytes. A run-
time parameter dictates the frequency of truncates, thus
controlling how often the kernel invokes synchronize to
read a shared rmap. The benchmark reports the number of
forks executed per millisecond. We ran the benchmark
using truncate frequencies ranging from once per fork to
once per ten forks.

Figure 11 shows the results of the fork-truncate
benchmark. The stock version of Linux outperforms
OpLog by about 10% when the benchmark truncates files
after one call to fork and by about 25% when truncat-
ing after two calls to fork. However, we find that even

10

[with OpLog —+—
stock

N ®
[SHRS

w B U
S o & &

Throughput (fork/msec)

)
o o

1 2 3 4 5 6 7 8 9
of forks per truncate

Figure 11: Performance of the fork-truncate benchmark for varying
truncate frequencies.

6000
OpLog local absorption —+—
OpLog global absorption
OpLog basic

lock-free

5000
4000

3000

%
J"H‘.""-|—|-|-I-\-|..|.

2000 FTH AR b

Throughput (ops/msec)

5]
S
3

24
of cores

30

Figure 12: Performance of a lock-free list implementation and three
OpLog list implementations.

when truncate is called once every three forks, OpLog
outperforms the stock kernel. This suggests that OpLog
improves performance even when the data structure is
read periodically.

7.3 Breakdown of techniques

We evaluate the individual OpLog optimizations from
§4 with user level microbenchmarks we wrote using the
OpLog C++ implementation. To drive the microbench-
marks we implement a singly-linked list using OpLog,
which the benchmark adds and remove entries from con-
currently. Benchmarking a singly-linked list is interesting
because it allows us to compare OpLog versions of the
linked list with a lock-free design [17].

We study how much each technique from §4 affects
performance using three different OpLog list implementa-
tions. The first is a OpLog list without any type-specific
optimizations (“OpLog basic”). Comparing throughput
of OpLog basic to the throughput of the lock-free list
demonstrates how much batching list operations can im-
prove performance. The other two list implementations
demonstrate how much absorption improves performance.
The second OpLog list uses type-specific information to
perform absorption during synchronize. synchronize
executes an add operation only if there is not a remove
operation logged for the same element (“OpLog global
absorption”). The third list takes advantage of the fact
that the operations do not have to be executed in order: it
performs absorption immediately when a thread logs an
operation (“OpLog local absorption™).

We wrote a microbenchmark to stress each list imple-
mentation. The benchmark instantiates a global list and
creates one thread on each core. Each thread executes a
loop that adds an element to the list, spins for 1000 cycles,
removes the element from the list, and spins for another
1000 cycles. We count each iteration of the loop as one
operation. We chose to delay 1000 cycles to simulate a
list that is manipulated once every system call.

If operations on the lock-free list cause cache con-
tention, we would expect OpLog basic to provide some
performance improvement. OpLog global absorption
should perform better than basic OpLog, because it ends
up performing fewer operations on the shared list. OpLog
local absorption should scale linearly, because when a
thread logs a remove operation, OpLog should absorb the
preceding add operation executed by the thread.

Figure 12 presents the results. The lock-free line
shows that the throughput of the lock-free list peaks at
3 cores with 1364 operations per millisecond. OpLog
basic throughput increases up to 4463 operations per mil-
lisecond on six cores, then begins to decrease until 1979
operations per millisecond on 48 cores. Throughput starts
to decrease for more than 6 cores because the bench-
mark starts using more than one CPU node and inter-
core communication becomes more expensive. OpLog
global absorption throughput peaks at 5186 operations
per millisecond on eight cores. Similar to OpLog basic,
OpLog global absorption throughput decreases with more
cores and is 2516 operations per millisecond on 48 cores.
OpLog local absorption throughput scales linearly and
achieves 49963 operations per millisecond on 48 cores.

OpLog allocates per-core data structures dynamically
to avoid allocating them when an object is not heavily
used. To measure the importance of this technique we
measure the space overhead for dentrys with regular
distributed reference counters instead of OpLog’s space-
optimized distributed counters. Each dentry is 192 bytes,
and adding an 8-byte integer per core incurs a 200% over-
head per dentry (384 bytes) for a regular distributed
counter on our 48-core machine. As an example, we
examined the dcache on our experimental machine af-
ter it had been running for some time; it had 15 mil-
lion dentrys. The absolute storage overhead without
OpLog’s optimization would thus have been 5 GBytes;
OpLog’s optimization reduces this to a small constant-
size overhead.

7.4 Programmer effort

To compare the programmer effort OpLog requires to
the effort per-core data structures require we counted the
number of lines of code added or modified when applying
OpLog and per-core data structures to three Linux kernel
subsystems. We implemented per-core versions of the
rmap and inotify and used the existing per-core version

11

Subsystem Per-core LOC OpLog LOC
rmap 473 45
inotify 242 11
open files list 133 8

Figure 13: The number of lines of code (LOC) required by per-core
implementations and OpLog implementations.

of the open files list. The lines of code for the OpLog im-
plementations do not include type-specific optimizations,
only calls to synchronize and log.

Figure 7.4 presents the number of lines of code. The
rmap required the most lines of code for both the per-core
and OpLog implementations, because the rmap is not
very well abstracted, so we had to modify much of the
code that uses the rmap. The inotify and the open-files
implementations required fewer code changes because
they are well abstracted, so we did not need to modify
any code that invoked them.

The OpLog implementations of all three subsystems
required fewer changes than the per-core versions. The
OpLog implementations do not modify operations, except
for adding calls to synchronize or log. After calling
synchronize, the existing code for read operations can
safely access the shared data structure. The per-core
implementations, on the other hand, replace every update
operation on the shared data structure with an operation
on a per-core operation and every read operation with
code that implements a reconciliation policy.

The number of lines of code required to use OpLog
is few compared to using per-core data structures. This
suggests that OpLog is helpful for reducing the program-
mer effort required to optimize communication in update
intensive data structures.

8 Discussion and future work

The machine used in the paper implements the widely
used MOESI directory-based cache coherence protocol.
The exact details of the cache-coherence protocol do not
matter that much for the main point of the paper, but
improvements in cache-coherence protocols could change
the exact point at which the techniques are applicable.
An interesting area of research to explore is to have the
cache-coherence protocol expose more state.

Another future direction of research is to extend OpLog
with other optimizations. For example, OpLog could
exploit locality by absorbing state in near-by cores first,
and arranging the cores in a tree topology to aggregate the
state hierarchically. This design can reduce the latency of
executing synchronize.

9 Conclusions

Data structures that experience many updates can pose
a scalability bottleneck to multicore systems, even if the

data structure is implemented without locks. Prior ap-
proaches to solving this problem require programmers to
change their application code and data structure semantics
to achieve scalability for updates. This paper presented
OpLog, a generic approach for scaling an update-heavy
workload using per-core logs along with timestamps for
ordering updates. Timestamps allow OpLog to preserve
linearizability for data structures, and OpLog’s API allows
programmers to preserve existing data structure seman-
tics and implementations. Results with a prototype of
OpLog for Linux show that it improves throughput of
real applications such as Exim and Apache for certain
workloads. As the number of cores in systems continues
to increase, we expect more scalability bottlenecks due
to update-heavy data structures, which programmers can
address easily using OpLog.

References
[1] Exim, May 2010. http://www.exim.org/.

[2] Recoll, July 2013. www.recoll.org/.

[3] J. Appavoo, D. D. Silva, O. Krieger, M. Auslander,
M. Ostrowski, B. Rosenburg, A. Waterland, R. W.
Wisniewski, J. Xenidis, M. Stumm, and L. Soares.
Experience distributing objects in an SMMP OS.
ACM Trans. Comput. Syst., 25(3):6, 2007.

[4] H. G. Baker. Minimizing reference count updating

with deferred and anchored pointers for functional

data structures. ACM SIGPLAN Notices, 29(9), Sept.

1994.

[5] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu,

V. Prabhakaran, M. Wei, J. D. Davis, S. Rao, T. Zou,

and A. Zuck. Tango: Distributed data structures over

a shared log. In Proc. of the 24th SOSP, Farmington,

PA, Nov. 2013.

[6] A. Baumann, P. Barham, P.-E. Dagand, T. Haris,

R. Isaacs, S. Peter, T. Roscoe, A. Schiipbach, and

A. Singhania. The Multikernel: a new OS architec-

ture for scalable multicore systems. In Proc. of the

22nd SOSP, Big Sky, MT, USA, Oct. 2009.

[71 S. Boyd-Wickizer, A. Clements, Y. Mao,

A. Pesterev, M. F. Kaashoek, R. Morris, and

N. Zeldovich. An analysis of Linux scalability to

many cores. In Proc. of the 9th OSDI, Vancouver,

Canada, Oct. 2010.

[8] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and

N. Zeldovich. Non-scalable locks are dangerous. In

Proc. of the Linux Symposium, Ottawa, Canada, July

2012.

12

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

A. T. Clements, M. F. Kaashoek, and N. Zel-
dovich. RadixVM: Scalable address spaces for mul-
tithreaded applications. In Proceedings of the ACM
EuroSys Conference (EuroSys 2013), Prague, Czech
Republic, Apr. 2013.

A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T.
Morris, and E. Kohler. The scalable commutativity
rule: Designing scalable software for multicore pro-
cessors. In Proc. of the 24th SOSP, Farmington, PA,
Nov. 2013.

P. Conway, N. Kalyanasundharam, G. Donley,
K. Lepak, and B. Hughes. Cache hierarchy and
memory subsystem of the AMD Opteron processor.
IEEE Micro, 30(2):16-29, Mar. 2010.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan,
H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szyma-
niak, C. Taylor, R. Wang, and D. Woodford. Span-
ner: Google’s globally-distributed database. In Proc.
of the OSDI 2012, Hollywood, CA, Oct. 2012.

T. David, R. Guerraoui, and V. Trigonakis. Every-
thing you always wanted to know about synchro-
nization but were afraid to ask. In Proc. of the 24th
SOSP, Farmington, PA, Nov. 2013.

J. DeTreville. Experience with concurrent garbage
collectors for Modula-2+. Technical Report 64,
DEC Systems Research Center, Nov. 1990.

F. Ellen, Y. Lev, V. Luchango, and M. Moir. SNZI:
Scalable nonzero indicators. In PODC 2007, Port-
land, Oregon, USA, Aug. 2007.

B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm.
Tornado: maximizing locality and concurrency in a
shared memory multiprocessor operating system. In
Proc. of the 3rd OSDI, pages 87-100, 1999.

T. Harris. A pragmatic implementation of non-
blocking linked-lists. In Proc. of the 15th Interna-
tional Conference on Distributed Computing, pages
300-314, 2001.

D. Hendler, 1. Incze, N. Shavit, and M. Tzafrir.
Flat combining and the synchronization-parallelism
tradeoff. In Proc. of the 22nd ACM Symposium on
Farallelism in Algorithms and Architectures, pages
355-364, Thira, Santorini, Greece, 2010.

Intel. An introduction to the Intel QuickPath Inter-
connect, Jan. 2009.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Intel. Intel Xeon processor E7-8800/4800/2800 weakly connected replicated storage system. In Proc.

product families, Apr. 2011. http: of the 15th SOSP, 1995.

//www.intel.com/content/dam/www/ .

public/us/en/documents,/datasheets/ [32] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Mad-

xeon-e7-8800-4800- 2800 families-vol-1-datashee{en- Speedy transactions in multicore in-memory

pdf. databases. In Proc. of the 24th SOSP, Farmington,
PA, Nov. 2013.

Jonathan Corbet. The object-based reverse-mapping)
VM, Feb. 2003. http://lun.net/Articles/ [33] J. R. Vig. Quartz crystal resonators and

23732/. oscillators for frequency control and tim-

ing applications - a tutorial (rev. 8.5.5.3),
Jonathan Corbet. Virtual memory II: the return of ob- May 2013. http://www.ieee-uffc.org/
jrmap, Mar. 2004. http://lwn.net/Articles/ frequency-control/learning-vig-tut.asp.
75198/, [34] D. Wentzlaff and A. Agarwal. Factored operating
Jonathan Corbet. Dcache scalability and RCU- systems (fos): the case for a scalable operating sys-
walk, Dec. 2010. http://lwn.net/Articles/ tem for multicores. SIGOPS Oper. Syst. Rev., 43(2):
419811/. 76-85, 20009.

Jonathan Corbet. The case of the overly anony-
mous anon_vma, Apr. 2010. http://lwn.net/
Articles/383162/.

Y. Levanoni and E. Petrank. An on-the-fly reference-
counting garbage collector for Java. ACM Trans.
Prog. Lang. Syst., 28(1), Jan. 2006.

P. E. McKenney. Exploiting Deferred Destruction:
An Analysis of Read-Copy-Update Techniques
in Operating System Kernels. PhD thesis, OGI
School of Science and Engineering at Oregon
Health and Sciences University, 2004. Available:
http://www.rdrop.com/users/paulmck/RCU/
RCUdissertation.2004.07.14el.pdf.

P. E. McKenney, D. Sarma, A. Arcangeli, A. Kleen,
O. Krieger, and R. Russell. Read-copy update. In
Proc. of the Linux Symposium, pages 338-367, Ot-
tawa, Canada, 2002.

J. M. Mellor-Crummey and M. L. Scott. Algorithms
for scalable synchronization on shared-memory mul-
tiprocessors. ACM Trans. Comput. Syst., 9(1):21-65,
1991.

I. Moraru, D. G. Andersen, and M. Kaminsky. There
is more consensus in egalitarian parliaments. In
Proc. of the 24th SOSP, Farmington, PA, Nov. 2013.

C. A. N. Soules, J. Appavoo, K. Hui, D. Da Silva,
G. R. Ganger, O. Krieger, M. Stumm, R. W. Wis-
niewski, M. Auslander, M. Ostrowski, B. Rosenburg,
and J. Xenidis. System support for online recon-
figuration. In Proc. of the 2003 USENIX Annual
Technical Conference, pages 141-154, June 2003.

D. B. Terry, M. M. Theimer, K. Petersen, and A. J.
Demers. Managing update conflicts in Bayou, a

13

